Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Appl Environ Microbiol ; 90(2): e0165823, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38236032

RESUMO

In this study, we compared conventional vacuum filtration of small volumes through disc membranes (effective sample volumes for potable water: 0.3-1.0 L) with filtration of high volumes using ultrafiltration (UF) modules (effective sample volumes for potable water: 10.6-84.5 L) for collecting bacterial biomass from raw, finished, and tap water at seven drinking water systems. Total bacteria, Legionella spp., Legionella pneumophila, Mycobacterium spp., and Mycobacterium avium complex in these samples were enumerated using both conventional quantitative PCR (qPCR) and viability qPCR (using propidium monoazide). In addition, PCR-amplified gene fragments were sequenced for microbial community analysis. The frequency of detection (FOD) of Legionella spp. in finished and tap water samples was much greater using UF modules (83% and 77%, respectively) than disc filters (24% and 33%, respectively). The FODs for Mycobacterium spp. in raw, finished, and tap water samples were also consistently greater using UF modules than disc filters. Furthermore, the number of observed operational taxonomic units and diversity index values for finished and tap water samples were often substantially greater when using UF modules as compared to disc filters. Conventional and viability qPCR yielded similar results, suggesting that membrane-compromised cells represented a minor fraction of total bacterial biomass. In conclusion, our research demonstrates that large-volume filtration using UF modules improved the detection of opportunistic pathogens at the low concentrations typically found in public drinking water systems and that the majority of bacteria in these systems appear to be viable in spite of disinfection with free chlorine and/or chloramine.IMPORTANCEOpportunistic pathogens, such as Legionella pneumophila, are a growing public health concern. In this study, we compared sample collection and enumeration methods on raw, finished, and tap water at seven water systems throughout the State of Minnesota, USA. The results showed that on-site filtration of large water volumes (i.e., 500-1,000 L) using ultrafiltration membrane modules improved the frequency of detection of relatively rare organisms, including opportunistic pathogens, compared to the common approach of filtering about 1 L using disc membranes. Furthermore, results from viability quantitative PCR (qPCR) with propidium monoazide were similar to conventional qPCR, suggesting that membrane-compromised cells represent an insignificant fraction of microorganisms. Results from these ultrafiltration membrane modules should lead to a better understanding of the microbial ecology of drinking water distribution systems and their potential to inoculate premise plumbing systems with opportunistic pathogens where conditions are more favorable for their growth.


Assuntos
Azidas , Água Potável , Legionella pneumophila , Legionella , Mycobacterium , Propídio/análogos & derivados , Água Potável/microbiologia , Mycobacterium/genética , Microbiologia da Água , Abastecimento de Água , Legionella/genética
2.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892344

RESUMO

SARS-CoV-2 is a highly infectious virus responsible for the COVID-19 pandemic. Therefore, it is important to assess the risk of SARS-CoV-2 infection, especially in persistently positive patients. Rapid discrimination between infectious and non-infectious viruses aids in determining whether prevention, control, and treatment measures are necessary. For this purpose, a method was developed and utilized involving a pre-treatment with 50 µM of propidium monoazide (PMAxx, a DNA intercalant) combined with a digital droplet PCR (ddPCR). The ddPCR method was performed on 40 nasopharyngeal swabs (NPSs) both before and after treatment with PMAxx, revealing a reduction in the viral load at a mean of 0.9 Log copies/mL (SD ± 0.6 Log copies/mL). Furthermore, six samples were stratified based on the Ct values of SARS-CoV-2 RNA (Ct < 20, 20 < Ct < 30, Ct > 30) and analyzed to compare the results obtained via a ddPCR with viral isolation and a negative-chain PCR. Of the five samples found positive via a ddPCR after the PMAxx treatment, two of the samples showed the highest post-treatment SARS-CoV-2 loads. The virus was isolated in vitro from both samples and the negative strand chains were detected. In three NPS samples, SARS CoV-2 was present post-treatment at a low level; it was not isolated in vitro, and, when detected, the strand was negative. Our results indicate that the established method is useful for determining whether the SARS-CoV-2 within positive NPS samples is intact and capable of causing infection.


Assuntos
Azidas , COVID-19 , Nasofaringe , Propídio , SARS-CoV-2 , Carga Viral , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Azidas/química , Propídio/análogos & derivados , Propídio/química , COVID-19/virologia , Carga Viral/métodos , Nasofaringe/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Teste de Ácido Nucleico para COVID-19/métodos , Reação em Cadeia da Polimerase/métodos
3.
BMC Oral Health ; 24(1): 575, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760758

RESUMO

BACKGROUND: Translational microbiome research using next-generation DNA sequencing is challenging due to the semi-qualitative nature of relative abundance data. A novel method for quantitative analysis was applied in this 12-week clinical trial to understand the mechanical vs. chemotherapeutic actions of brushing, flossing, and mouthrinsing against the supragingival dental plaque microbiome. Enumeration of viable bacteria using vPCR was also applied on supragingival plaque for validation and on subgingival plaque to evaluate interventional effects below the gingival margin. METHODS: Subjects with gingivitis were enrolled in a single center, examiner-blind, virtually supervised, parallel group controlled clinical trial. Subjects with gingivitis were randomized into brushing only (B); brushing and flossing (BF); brushing and rinsing with Listerine® Cool Mint® Antiseptic (BA); brushing and rinsing with Listerine® Cool Mint® Zero (BZ); or brushing, flossing, and rinsing with Listerine® Cool Mint® Zero (BFZ). All subjects brushed twice daily for 1 min with a sodium monofluorophosphate toothpaste and a soft-bristled toothbrush. Subjects who flossed used unflavored waxed dental floss once daily. Subjects assigned to mouthrinses rinsed twice daily. Plaque specimens were collected at the baseline visit and after 4 and 12 weeks of intervention. Bacterial cell number quantification was achieved by adding reference amounts of DNA controls to plaque samples prior to DNA extraction, followed by shallow shotgun metagenome sequencing. RESULTS: 286 subjects completed the trial. The metagenomic data for supragingival plaque showed significant reductions in Shannon-Weaver diversity, species richness, and total and categorical bacterial abundances (commensal, gingivitis, and malodor) after 4 and 12 weeks for the BA, BZ, and BFZ groups compared to the B group, while no significant differences were observed between the B and BF groups. Supragingival plaque vPCR further validated these results, and subgingival plaque vPCR demonstrated significant efficacy for the BFZ intervention only. CONCLUSIONS: This publication reports on a successful application of a quantitative method of microbiome analysis in a clinical trial demonstrating the sustained and superior efficacy of essential oil mouthrinses at controlling dental plaque compared to mechanical methods. The quantitative microbiological data in this trial also reinforce the safety and mechanism of action of EO mouthrinses against plaque microbial ecology and highlights the importance of elevating EO mouthrinsing as an integral part of an oral hygiene regimen. TRIAL REGISTRATION: The trial was registered on ClinicalTrials.gov on 31/10/2022. The registration number is NCT05600231.


Assuntos
Dispositivos para o Cuidado Bucal Domiciliar , Placa Dentária , Gengivite , Microbiota , Antissépticos Bucais , Escovação Dentária , Humanos , Placa Dentária/microbiologia , Gengivite/microbiologia , Antissépticos Bucais/uso terapêutico , Feminino , Microbiota/efeitos dos fármacos , Adulto , Escovação Dentária/métodos , Masculino , Método Simples-Cego , Pessoa de Meia-Idade , Salicilatos/uso terapêutico , Combinação de Medicamentos , Terpenos/uso terapêutico , Terpenos/farmacologia , Carga Bacteriana/efeitos dos fármacos , Anti-Infecciosos Locais/uso terapêutico , Adulto Jovem
4.
Mol Ecol ; 32(17): 4940-4952, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452629

RESUMO

Numerous studies have investigated the spatiotemporal variability in water microbial communities, yet the effects of relic DNA on microbial community profiles, especially microeukaryotes, remain far from fully understood. Here, total and active bacterial and microeukaryotic community compositions were characterized using propidium monoazide (PMA) treatment coupled with high-throughput sequencing in a river-reservoir ecosystem. Beta diversity analysis showed a significant difference in community composition between both the PMA untreated and treated bacteria and microeukaryotes; however, the differentiating effect was much stronger for microeukaryotes. Relic DNA only resulted in underestimation of the relative abundances of Bacteroidota and Nitrospirota, while other bacterial taxa exhibited no significant changes. As for microeukaryotes, the relative abundances of some phytoplankton (e.g. Chlorophyta, Dinoflagellata and Ochrophyta) and fungi were greater after relic DNA removal, whereas Cercozoa and Ciliophora showed the opposite trend. Moreover, relic DNA removal weakened the size and complexity of cross-trophic microbial networks and significantly changed the relationships between environmental factors and microeukaryotic community composition. However, there was no significant difference in the rates of temporal community turnover between the PMA untreated and treated samples for either bacteria or microeukaryotes. Overall, our results imply that the presence of relic DNA in waters can give misleading information of the active microbial community composition, co-occurrence networks and their relationships with environmental conditions. More studies of the abundance, decay rate and functioning of nonviable DNA in freshwater ecosystems are highly recommended in the future.


Assuntos
Ecossistema , Microbiota , Rios/microbiologia , Microbiota/genética , DNA/genética , Fitoplâncton , Consórcios Microbianos , Bactérias/genética
5.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952090

RESUMO

Paenibacillus polymyxa is an important biocontrol bacterium. The combination of propidium monoazide (PMA) and quantitative polymerase chain reactionq (qPCR) has proven effective in quantifying live bacteria from various microorganisms. The objective was to create a PMA-qPCR assay to precisely and consistently measure the number of living bacteria of biocontrol P. polymyxa. The primers were designed for the spo0A gene of P. polymyxa HY96-2. The optimal conditions for treating the target strain with PMA were a PMA concentration of 15 µg/mL, an incubation time of 5 min, and an exposure time of 10 min. The PMA-qPCR method had a limit of quantification (LOQ) of 1.0 × 103 CFU/mL for measuring the amount of viable P. polymyxa bacteria. The PMA-qPCR method is more sensitive than the qPCR method in detecting viable bacteria in the mixtures of viable and dead bacteria. The accuracy and reproducibility of quantifying viable P. polymyxa bacteria using the PMA-qPCR method were higher compared to the plate count method.


Assuntos
Paenibacillus polymyxa , Paenibacillus polymyxa/genética , Reprodutibilidade dos Testes , Bioensaio , Bactérias
6.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834834

RESUMO

Red sea bream iridovirus (RSIV) is an important aquatic virus that causes high mortality in marine fish. RSIV infection mainly spreads through horizontal transmission via seawater, and its early detection could help prevent disease outbreaks. Although quantitative PCR (qPCR) is a sensitive and rapid method for detecting RSIV, it cannot differentiate between infectious and inactive viruses. Here, we aimed to develop a viability qPCR assay based on propidium monoazide (PMAxx), which is a photoactive dye that penetrates damaged viral particles and binds to viral DNA to prevent qPCR amplification, to distinguish between infectious and inactive viruses effectively. Our results demonstrated that PMAxx at 75 µM effectively inhibited the amplification of heat-inactivated RSIV in viability qPCR, allowing the discrimination of inactive and infectious RSIV. Furthermore, the PMAxx-based viability qPCR assay selectively detected the infectious RSIV in seawater more efficiently than the conventional qPCR and cell culture methods. The reported viability qPCR method will help prevent the overestimation of red sea bream iridoviral disease caused by RSIV. Furthermore, this non-invasive method will aid in establishing a disease prediction system and in epidemiological analysis using seawater.


Assuntos
Doenças dos Peixes , Iridovirus , Dourada , Animais , Iridovirus/genética , Dourada/genética , Propídio , Reação em Cadeia da Polimerase
7.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570805

RESUMO

Escherichia coli O157:H7, Staphylococcus aureus, and Salmonella are major foodborne pathogens that are widespread in nature and responsible for several outbreaks of food safety accidents. Thus, a rapid and practical technique (PMA-mPCR) was developed for the simultaneous detection of viable E. coli O157:H7, S. aureus, and Salmonella in pure culture and in a food matrix. To eliminate false positive results, propidium monoazide (PMA) was applied to selectively suppress the DNA amplification of dead cells. The results showed the optimum concentration of PMA is 5.0 µg/mL. The detection limit of this assay by mPCR was 103 CFU/mL in the culture broth, and by PMA-mPCR was 104 CFU/mL both in pure culture and a food matrix (milk and ground beef). In addition, the detection of mixed viable and dead cells was also explored in this study. The detection sensitivity ratio of viable and dead counts was less than 1:10. Therefore, the PMA-mPCR assay proposed here might provide an efficient detection tool for the simultaneous detection of viable E. coli O157:H7, S. aureus, and Salmonella and also have great potential for the detection and concentration assessment of VBNC cells.


Assuntos
Escherichia coli O157 , Staphylococcus aureus , Animais , Bovinos , Staphylococcus aureus/genética , Escherichia coli O157/genética , Microbiologia de Alimentos , Salmonella/genética , Propídio , Azidas
8.
J Environ Sci (China) ; 125: 148-159, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375901

RESUMO

Urban villages are unique residential neighborhoods in urban areas in China. Roof tanks are their main form of water supply, and water quality deterioration might occur in this system because of poor hygienic conditions and maintenance. In this study, water samples were seasonally collected from an urban village to investigate the influence of roof tanks as an additional water storage device on the variation in the microbial community structure and pathogenic gene markers. Water stagnation in the roof tank induced significant decreases in chlorine (p < 0.05), residual chlorine was as low as 0.02 mg/L in spring. Propidium monoazide (PMA)-qPCR revealed a one-magnitude higher level of total viable bacterial concentration in roof tank water samples (2.14 ± 1.81 × 105 gene copies/mL) than that in input water samples (3.57 ± 2.90 × 104 gene copies/mL, p < 0.05), especially in spring and summer. In addition, pathogenic fungi, Mycobacterium spp., and Legionella spp. were frequently detected in the roof tanks. Terminal users might be exposed to higher microbial risk induced by high abundance of Legionella gene marker. Spearman's rank correlation and redundancy analysis showed that residual chlorine was the driving force that promoted bacterial colonization and shaped the microbial community. It is worth noted that the sediment in the pipe will be agitated when the water supply is restored after the water outages, which can trigger an increase in turbidity and bacterial biomass. Overall, the findings provide practical suggestions for controlling microbiological health risks in roof tanks in urban villages.


Assuntos
Cloro , Microbiologia da Água , Abastecimento de Água , Bactérias/genética , Reação em Cadeia da Polimerase em Tempo Real , Qualidade da Água
9.
Int J Dent Hyg ; 21(2): 357-364, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36524318

RESUMO

OBJECTIVE: Toothbrushes are colonized by microorganisms, implying a risk of infection. That risk can be reduced by decreasing the microbial contamination of the filaments. Therefore, this study aimed to determine the antiseptic efficacy of a 0.05% chlorhexidine + 0.05% cetylpyridinium chloride mouthwash on toothbrushes. METHODS: A total of twelve toothbrushes used three times/day for 14 days by orally and systemically healthy people were randomly split into two groups, and their heads were immersed for 2 h in PBS (control) or Perio·Aid Active Control (treatment). The microorganisms were recovered, and their number was calculated by culture, quantitative PCR, and viability PCR. Statistical differences were first assessed with a two-way mixed ANOVA and subsequently with Student's t-test. RESULTS: The results showed no statistical differences in the total number of cells for the treatment (mean ± CI95% of 7.27 ± 1.09 log10 bacteria/ml) and the control (7.62 ± 0.64 log10 bacteria/ml) groups, but a significantly lower number of live cells in the treatment group (4.58 ± 0.61 log10 viable bacteria/ml and 2.15 ± 1.42 log10 cfu/ml) than in the control group (6.49 ± 1.39 log10 viable bacteria/ml and 5.04 ± 0.93 log10 cfu/ml). CONCLUSIONS: Based on our findings, sanitization of toothbrushes with this mouthwash reduces the number of live microorganisms adhered to the filaments. Such decrease of the bacterial load could include bacteria from the oral cavity, from the environment, and from nearby toothbrushes since the quantification was not limited to any bacterial taxon.


Assuntos
Clorexidina , Antissépticos Bucais , Humanos , Clorexidina/uso terapêutico , Antissépticos Bucais/uso terapêutico , Cetilpiridínio/uso terapêutico , Descontaminação/métodos , Imersão , Bactérias
10.
Arch Microbiol ; 204(9): 557, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35972563

RESUMO

Stool is the most commonly used sample for gut microbiota analysis in humans and animals. Cryopreservation of stool at - 80 °C is a feasible and simple method in clinics and researches, especially in large-scale cohort studies. However, the viability of bacteria in stool after freezing has yet well-demonstrated quantitatively and compositionally. This study determined the viable microbiota of samples under cryopreservation at - 80 °C, relative to fresh samples and that stored at ambient. Stool samples were collected from three healthy adults. Propidium monoazide treatment combined with quantitative PCR and 16S rRNA gene sequencing was performed to target viable microbiota. After freezing, the number of viable bacteria decreased, though inter-individual difference existed. Notably, the alpha diversity of viable microbiota after freezing did not change significantly, while its composition changed. Freezing significantly reduced the viable bacteria in Gram-negative genera of Bacteroidetes and Firmicutes, and proportionally increased Gram-positive bacteria in genera of Actinobacteria and Firmicutes, including Bifidobacterium, Collinsella and Blautia, implying that the cell envelope structure associated with the bacterial sensitivity to freezing. On the contrary, the room temperature storage not only decreased the number of viable bacteria, but also decreased the microbial alpha diversity, and remarkably enriched facultative anaerobes of Escherichia-Shigella, Enterococcus and Lactococcus, some of which are opportunistic pathogens. Our findings suggested that changes in viable microbiota in stool samples caused by cryopreservation should be paid enough attention for downstream utilization.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias/genética , Criopreservação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Viabilidade Microbiana , RNA Ribossômico 16S/genética
11.
Crit Rev Food Sci Nutr ; 62(25): 6854-6871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33819118

RESUMO

The market of probiotic foods and supplements is growing rapidly but frequently the commercialized products are not compliant with their labels in terms of claimed probiotic strain(s) and labeled number of viable probiotic cells, thus mining the authenticity of these probiotic products.In this review, we provide an up-to-date overview of: (i) the current regulatory aspects, (ii) the consistency of probiotic foods and supplements with their labels, (iii) the implications of mislabeling on the quality, safety and functionality of these products and (iv) the available and most promising methods to assess the authenticity of these products, taking into account the need to discriminate among the different physiological states probiotics might be in the carrier matrices. It arises that authenticity of probiotic foods and supplements is an urgent issue, of industrial and legislation relevance, that need to be addressed. A plethora of methods are available to reach this goal, each with its own advantages and disadvantages. Protocols that combine the use of propidium monoazide (PMA) with metagenomics or polyphasic approaches including the PMA real time PCR or flow cytometry (for the viability assessment) and the whole genome sequence analysis (for the identification and typing of the probiotic strain) are the most promising that should be standardized and used by producers and regulators.


Assuntos
Probióticos , Suplementos Nutricionais/análise , Microbiologia de Alimentos , Metagenômica , Probióticos/análise , Reação em Cadeia da Polimerase em Tempo Real
12.
J Dairy Sci ; 105(2): 1028-1038, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34998542

RESUMO

Escherichia coli O157:H7, the causative agent of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome in humans, generates a effective harm to community health because of its high pathogenicity. A real-time recombinase-aided amplification (rRAA) is an emerging method for nucleic acid detection. However, genomic DNA of bacteria could exist in food and the environment for a long time after death and could be amplified by rRAA assay, resulting in false-positive signal; thus, developing a fast and sensitive method is necessary to detect viable foodborne pathogens in food products. In our research, rRAA assay coupled with an enhanced nucleic acid binding dye named improved propidium monoazide (PMAxx) was established and applied in viable E. coli O157:H7 identification in skim milk. The PMAxx could eliminate interference from dead bacteria by permeating impaired membranes and covalently linking to DNA to prevent DNA amplification. The PMAxx-rRAA assay was performed with high sensitivity and good specificity. The PMAxx-rRAA assay could detect as low as 5.4 × 100 cfu/mL of viable E. coli O157:H7 in pure culture, and 7.9 × 100 cfu/mL of viable E. coli O157:H7 in skim milk. In addition, the PMAxx-rRAA assay was performed in the presence of a high concentration of dead bacteria or nontarget bacteria in skim milk to verify the capacity to resist interference from dead bacteria and nontarget bacteria. Therefore, the established PMAxx-rRAA assay is a valuable tool for the identification of viable E. coli O157:H7 in complex food matrix.


Assuntos
Escherichia coli O157 , Proteínas de Escherichia coli , Animais , Azidas , Escherichia coli O157/genética , Microbiologia de Alimentos , Leite , Propídio/análogos & derivados , Recombinases
13.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499040

RESUMO

Viability PCR (vPCR) uses a DNA intercalating dye to irreversibly bind double-stranded DNA from organisms with compromised cell membranes. This allows the selective amplification of DNA from intact cells. An optimized vPCR protocol should minimize false positives (DNA from compromised cells not fully removed) and false negatives (live cell DNA bound by the dye). We aimed to optimize a vPCR protocol using PMAxx™ as the intercalating agent and Salmonella Enteritidis as the target organism. To do this, we studied (1) single vs. sequential PMAxx™ addition; (2) a wash step post-PMAxx™ treatment; (3) a change of tube post-treatment before DNA extraction. The single vs. sequential PMAxx™ addition showed no difference. Results signified that PMAxx™ potentially attached to polypropylene tube walls and bound the released DNA from PMA-treated live cells when lysed in the same tube. A wash step was ineffective but transfer of the treated live cells to a new tube minimized these false-negative results. Our optimized protocol eliminated 108 CFU/mL heat-killed cell DNA in the presence of different live cell dilutions without compromising the amplification of the live cells, minimizing false positives. With further improvements, vPCR has great potential as a culture-independent diagnostic tool.


Assuntos
Azidas , Salmonella enteritidis , Propídio , Viabilidade Microbiana , Reação em Cadeia da Polimerase em Tempo Real/métodos , Salmonella enteritidis/genética , Salmonella enteritidis/metabolismo , DNA Bacteriano/metabolismo
14.
Appl Environ Microbiol ; 87(5): e0265320, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33361365

RESUMO

The development of viability quantitative PCR (v-qPCR) has allowed for a more accurate assessment of the viability of a microbial sample by limiting the amplification of DNA from dead cells. Although valuable, v-qPCR is not infallible. One of the most limiting factors for accurate live/dead distinction is the length of the qPCR amplicon used. However, no consensus or guidelines exist for selecting and designing amplicon lengths for optimal results. In this study, a wide range of incrementally increasing amplicon lengths (68 to 906 base pairs [bp]) was used on live and killed cells of nine bacterial species treated with a viability dye (propidium monoazide [PMA]). Increasing amplicon lengths up to approximately 200 bp resulted in increasing quantification cycle (Cq) differences between live and killed cells while maintaining a good qPCR efficiency. Longer amplicon lengths, up to approximately 400 bp, further increased the Cq difference but at the cost of qPCR efficiency. Above 400 bp, no valuable increase in Cq differences was observed. IMPORTANCE Viability quantitative PCR (v-qPCR) has evolved into a valuable, mainstream technique for determining the number of viable microorganisms in samples by qPCR. Amplicon length is known to be positively correlated with the ability to distinguish between live and dead bacteria but is negatively correlated with qPCR efficiency. This trade-off is often not taken into account and might have an impact on the accuracy of v-qPCR data. Currently, there is no consensus on the optimal amplicon length. This paper provides methods to determine the optimal amplicon length and suggests an amplicon length range for optimal v-qPCR, taking into consideration the trade-off between qPCR efficiency and live/dead distinction.


Assuntos
Viabilidade Microbiana , Reação em Cadeia da Polimerase , DNA Bacteriano
15.
Vet Res ; 52(1): 11, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478585

RESUMO

Infection with Mycobacterium avium subspecies paratuberculosis (MAP) is complex, but little is known about the role that natural killer (NK) cells play. In the present study, four bovine NK-lysin peptides were synthesized to evaluate their bactericidal activity against MAP. The results demonstrated that bNK-lysin peptides were directly bactericidal against MAP, with bNK1 and bNK2A being more potent than bNK2B and bNK2C. Mechanistically, transmission electron microscopy revealed that the incubation of MAP with bNK2A resulted in extensive damage to cell membranes and cytosolic content leakage. Furthermore, the addition of bNK2A linked with a cell-penetrating peptide resulted in increased MAP killing in a macrophage model.


Assuntos
Antibacterianos/farmacologia , Mycobacterium avium subsp. paratuberculosis/efeitos dos fármacos , Proteolipídeos/farmacologia , Animais , Bovinos
16.
Food Microbiol ; 99: 103816, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119101

RESUMO

Protozoan contamination in produce is of growing importance due to their capacity to cause illnesses in consumers of fresh leafy greens. Viability assays are essential to accurately estimate health risk caused by viable parasites that contaminate food. We evaluated the efficacy of reverse transcription quantitative PCR (RT-qPCR), propidium monoazide coupled with (q)PCR, and viability staining using propidium iodide through systematic laboratory spiking experiments for selective detection of viable Cryptosporidium parvum, Giardia enterica, and Toxoplasma gondii. In the presence of only viable protozoa, the RT-qPCR assays could accurately detect two to nine (oo)cysts/g spinach (in 10 g processed). When different proportions of viable and inactivated parasite were spiked, mRNA concentrations correlated with increasing proportions of viable (oo)cysts, although low levels of false-positive mRNA signals were detectable in the presence of high amounts of inactivated protozoa. Our study demonstrated that among the methods tested, RT-qPCR performed more effectively to discriminate viable from inactivated C. parvum, G. enterica and T. gondii on spinach. This application of viability methods on leafy greens can be adopted by the produce industry and regulatory agencies charged with protection of human public health to screen leafy greens for the presence of viable protozoan pathogen contamination.


Assuntos
Cryptosporidium parvum/isolamento & purificação , Parasitologia de Alimentos/métodos , Giardia/isolamento & purificação , Spinacia oleracea/parasitologia , Toxoplasma/isolamento & purificação , Animais , Azidas/química , Cryptosporidium parvum/química , Cryptosporidium parvum/genética , Cryptosporidium parvum/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Giardia/química , Giardia/genética , Giardia/crescimento & desenvolvimento , Oocistos/química , Oocistos/crescimento & desenvolvimento , Oocistos/isolamento & purificação , Folhas de Planta/parasitologia , Propídio/análogos & derivados , Propídio/química , Reação em Cadeia da Polimerase em Tempo Real , Coloração e Rotulagem , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento
17.
J Dairy Sci ; 104(6): 6588-6597, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33715855

RESUMO

In this study, we established a rapid and sensitive method for the detection of viable Salmonella Typhimurium, Staphylococcus aureus, and Listeria monocytogenes in milk using biotin-exposure-based immunomagnetic separation (IMS) combined with sodium dodecyl sulfate (SDS), propidium monoazide (PMA), and multiplex real-time PCR (mRT-PCR). We used IMS to lessen the assay time for isolation of target bacteria. We then optimized the coupling conditions and immunomagnetic capture process. The immunoreaction and incubation times for 5 µg of mAb coupled with 500 µg of streptavidin-functionalized magnetic beads using a streptavidin-biotin system were 90 and 30 min, respectively. Treatment with SDS-PMA before mRT-PCR amplification eliminated false-positive outcomes from dead bacteria and identified viable target bacteria with good sensitivity and specificity. The limit of detection of IMS combined with the SDS-PMA-mRT-PCR assay for the detection of viable Salmonella Typhimurium, Staph. aureus, and L. monocytogenes in spiked milk matrix samples was 10 cfu/mL and remained significant even in the appearance of 106 cfu/mL of nontarget bacteria. The entire detection process was able to identify viable bacteria within 9 h. The combination of biotin-exposure-mediated IMS and SDS-PMA-mRT-PCR has potential value for the rapid and sensitive detection of foodborne pathogens.


Assuntos
Listeria monocytogenes , Animais , Azidas , Biotina , Separação Imunomagnética/veterinária , Leite , Propídio/análogos & derivados , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Salmonella typhimurium/genética , Dodecilsulfato de Sódio , Staphylococcus aureus/genética
18.
World J Microbiol Biotechnol ; 37(7): 127, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181131

RESUMO

This study investigated the effect of inoculating Lactobacillus (L.) plantarum PS-8 in fermentation of alfalfa silages. We monitored the fermentation characteristics and bacterial population dynamics during the ensiling process. PacBio single molecule real time sequencing was combined with propidium monoazide (PMA) treatment to monitor the viable microbiota dynamics. We found that inoculating L. plantarum PS-8 may improve the silage quality by accelerating acidification, reducing the amounts of clostridia, coliform bacteria, molds and yeasts, elevating the protein and organic acid contents (except butyrate), and enhancing lactic acid bacteria (LAB) while suppressing harmful microorganisms. Some significant differential abundant taxa were found between the PMA-treated and non-treated microbiota. For example, the relative abundances of L. brevis, L. plantarum, and Pediococcus pentosaceus were significantly higher in the PMA-treated group than the non-PMA-treated group, suggesting obvious differences between the viable and non-viable microbiota. It would thus be necessary to distinguish between the viable and non-viable microbial communities to further understand their physiological contribution in silage fermentation. By tracking the dynamics of viable microbiota in relation with changes in the physico-chemical parameters, our study provided novel insights into the beneficial effects of inoculating L. plantarum PS-8 in silage fermentation and the physiological function of the viable bacterial communities.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fungos/crescimento & desenvolvimento , Lactobacillus plantarum/crescimento & desenvolvimento , Medicago sativa/microbiologia , Microbiota , Silagem/microbiologia , Azidas/análise , Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano , Fermentação , Lactobacillales/crescimento & desenvolvimento , Medicago sativa/metabolismo , Propídio/análogos & derivados , Propídio/análise
19.
BMC Oral Health ; 21(1): 460, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551743

RESUMO

BACKGROUND: Oral microbiome played an important role in maintaining healthy state and might exhibit certain changes under circumstances of diseases. However, current microbiological research using sequencing techniques did not regard dead bacteria as a separate part, causing findings based on subsequent analyses on dynamic equilibrium and functional pathways of microbes somewhat questionable. Since treatment by propidium monoazide (PMA) was able to remove dead bacteria effectively, it would be worth studying how the sequencing results after PMA treatment differed from those focusing on the whole microbiota. METHODS: Unstimulated whole saliva samples were obtained from 18 healthy people from 3 age groups (children, adults, and the elderly). After removal of dead bacteria by propidium monoazide (PMA), changes in the profile of salivary microbiome were detected using 16S rRNA sequencing technology, and differences among age groups were compared subsequently. RESULTS: Dead bacteria accounted for nearly a half of the whole bacteria flora in saliva, while freezing had little effect on the proportion of deaths. After treatment with PMA, the numbers of OTUs reduced by 4.4-14.2%, while the Shannon diversity indices decreased significantly (P < 0.01). Only 35.2% of positive and 6.1% of negative correlations were found to be shared by the whole microbiota and that with dead bacteria removed. Differences in significantly changed OTUs and functional pathways among different age groups were also observed between the group of PMA and the control. CONCLUSIONS: It was necessary to take the influence of living state of bacteria into account in analytic studies of salivary microbiome.


Assuntos
Microbiota , Idoso , Azidas , Bactérias/genética , Criança , DNA Bacteriano/genética , Humanos , Viabilidade Microbiana , Propídio/análogos & derivados , RNA Ribossômico 16S/genética
20.
Arch Microbiol ; 202(7): 1653-1662, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32274559

RESUMO

Azospirillum brasilense is a plant growth promoting bacteria used as an inoculant in diverse crops. Accurate analytical methods are required to enumerate viable cells in inoculant formulations or in planta. We developed a quantitative polymerase chain reaction (qPCR) assay associated to propidium monoazide (PMA) to evaluate the cell viability of A. brasilense in inoculant and in maize roots. A. brasilense was grown in culture medium and was exposed to 50 â„ƒ. Maize roots were grown in vitro and harvested 7 days after inoculation. Quantification was performed by qPCR, PMA-qPCR, and plate counting. Standard curves efficiency values ranged from 85 to 99%. The limit of detection was 104 CFU per gram of fresh root. Enumeration obtained in maize roots by qPCR where higher than enumeration by PMA-qPCR and by plate counting. PMA-qPCR assay was efficient in quantifying inoculant viable cells and provides reliable results in a quickly and accurately way compared to culture-dependent methods.


Assuntos
Azidas/metabolismo , Azospirillum brasilense/fisiologia , Microbiologia Industrial/métodos , Viabilidade Microbiana , Raízes de Plantas/microbiologia , Propídio/análogos & derivados , Reação em Cadeia da Polimerase em Tempo Real , Propídio/metabolismo , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA