Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 51(9): 2819-2832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38683349

RESUMO

PURPOSE: A series of new 68Ga-labeled tracers based on [68Ga]Ga-PSMA-617 were developed to augment the tumor-to-kidney ratio and reduce the activity accumulation in bladder, ultimately minimize radiation toxicity to the urinary system. METHODS: We introduced quinoline group, phenylalanine and decanoic acid into different tracers to enhance their lipophilicity, strategically limiting their metabolic pathway through the urinary system. Their binding affinity onto LNCaP cells was determined through in vitro saturation assays and competition binding assays. In vivo metabolic study, PET imaging and biodistribution experiment were performed in LNCaP tumor-bearing B-NSG male mice. The most promising tracer was selected for first-in-human study. RESULTS: Four radiotracers were synthesized with radiochemical purity (RCP) > 95% and molar activity in a range of 20.0-25.5 GBq/µmol. The binding affinities (Ki) of TWS01, TWS02 to PSMA were in the low nanomolar range (< 10 nM), while TWS03 and TWS04 exhibited binding affinities with Ki > 20 nM (59.42 nM for TWS03 and 37.14 nM for TWS04). All radiotracers exhibited high stability in vivo except [68Ga]Ga-TWS03. Micro PET/CT imaging and biodistribution analysis revealed that [68Ga]Ga-TWS02 enabled clear tumor visualization in PET images at 1.5 h post-injection, with higher tumor-to-kidney ratio (T/K, 0.93) and tumor-to-muscle ratio (T/M, 107.62) compared with [68Ga]Ga-PSMA-617 (T/K: 0.39, T/M: 15.01) and [68Ga]Ga-PSMA-11 (T/K: 0.15, T/M: 24.00). In first-in-human study, [68Ga]Ga-TWS02 effectively detected PCa-associated lesions including primary and metastatic lesions, with lower accumulation in urinary system, suggesting that [68Ga]Ga-TWS02 might be applied in the detection of bladder invasion, with minimized radiation toxicity to the urinary system. CONCLUSION: Introduction of quinoline group, phenylalanine and decanoic acid into different tracers can modulate the binding affinity and pharmacokinetics of PSMA in vivo. [68Ga]Ga-TWS02 showed high binding affinity to PSMA, excellent pharmacokinetic properties and clear imaging of PCa-associated lesions, making it a promising radiotracer for the clinical diagnosis of PCa. Moreover, TWS02 with a chelator DOTA could also label 177Lu and 225Ac, which could be used for PCa treatment without significant side effects. TRIAL REGISTRATION: The clinical evaluation of this study was registered On October 30, 2021 at https://www.chictr.org.cn/ (No: ChiCTR2100052545).


Assuntos
Glutamato Carboxipeptidase II , Tomografia por Emissão de Pósitrons , Humanos , Masculino , Camundongos , Animais , Distribuição Tecidual , Linhagem Celular Tumoral , Glutamato Carboxipeptidase II/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Traçadores Radioativos , Radioisótopos de Gálio/farmacocinética , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Antígenos de Superfície/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Radioquímica , Dipeptídeos/farmacocinética , Dipeptídeos/química , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
2.
Eur J Nucl Med Mol Imaging ; 51(9): 2794-2805, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38658392

RESUMO

PURPOSE: Prostate-specific membrane antigen (PSMA) is a promising target for diagnosis and radioligand therapy (RLT) of prostate cancer. Two novel PSMA-targeting radionuclide therapy agents, [177Lu]Lu-P17-087, and its albumin binder modified derivative, [177Lu]Lu-P17-088, were evaluated in metastatic castration-resistant prostate cancer (mCRPC) patients. The primary endpoint was dosimetry evaluation, the second endpoint was radiation toxicity assessment (CTCAE 5.0) and PSA response (PCWG3). METHODS: Patients with PSMA-positive tumors were enrolled after [68Ga]Ga-PSMA-11 PET/CT scan. Five mCRPC patients received [177Lu]Lu-P17-087 and four other patients received [177Lu]Lu-P17-088 (1.2 GBq/patient). Multiple whole body planar scintigraphy was performed at 1.5, 4, 24, 48, 72, 120 and 168 h after injection and one SPECT/CT imaging was performed at 24 h post-injection for each patient. Dosimetry evaluation was compared in both patient groups. RESULTS: Patients showed no major clinical side-effects under this low dose treatment. As expected [177Lu]Lu-P17-088 with longer blood circulation (due to its albumin binding) exhibited higher effective doses than [177Lu]Lu-P17-087 (0.151 ± 0.036 vs. 0.056 ± 0.019 mGy/MBq, P = 0.001). Similarly, red marrow received 0.119 ± 0.068 and 0.048 ± 0.020 mGy/MBq, while kidney doses were 0.119 ± 0.068 and 0.046 ± 0.022 mGy/MBq, respectively. [177Lu]Lu-P17-087 demonstrated excellent tumor uptake and faster kinetics; while [177Lu]Lu-P17-088 displayed a slower washout and higher average dose (7.75 ± 4.18 vs. 4.72 ± 2.29 mGy/MBq, P = 0.018). After administration of [177Lu]Lu-P17-087 and [177Lu]Lu-P17-088, 3/5 and 3/4 patients showed reducing PSA values, respectively. CONCLUSION: [177Lu]Lu-P17-088 and [177Lu]Lu-P17-087 displayed different pharmacokinetics but excellent PSMA-targeting dose delivery in mCRPC patients. These two agents are promising RLT agents for personalized treatment of mCRPC. Further studies with increased dose and frequency of RLT are warranted to evaluate the potential therapeutic efficacy. TRIAL REGISTRATION: 177Lu-P17-087/177Lu-P17-088 in Patients with Metastatic Castration-resistant Prostate Cancer (NCT05603559, Registered at 25 October, 2022). URL OF REGISTRY: https://classic. CLINICALTRIALS: gov/ct2/show/NCT05603559 .


Assuntos
Antígenos de Superfície , Glutamato Carboxipeptidase II , Lutécio , Metástase Neoplásica , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/diagnóstico por imagem , Idoso , Glutamato Carboxipeptidase II/metabolismo , Lutécio/uso terapêutico , Antígenos de Superfície/metabolismo , Pessoa de Meia-Idade , Albuminas , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/farmacocinética , Idoso de 80 Anos ou mais , Radioisótopos/uso terapêutico , Radiometria
3.
Eur J Nucl Med Mol Imaging ; 51(8): 2467-2483, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38520513

RESUMO

PURPOSE: The objective was to assess the association between molecular imaging (mi) variables on [18F]DCFPyL-PET/CT with clinical and disease characteristics and prostate specific antigen (PSA) related variables in patients with biochemical recurrence of prostate cancer (BRPC). MATERIAL AND METHODS: We analysed patients with BRPC after radical treatment. We obtained clinical and PSA variables: International Society of Urology Pathology (ISUP) grade group, European Association of Urology (EAU) risk classification, PSA (PSA≤1ng/ml, 12), PSA doubling time (PSAdt) and PSA velocity (PSAvel). All PET/CT scans were reviewed with the assistance of automated Prostate Molecular Imaging Standardized Evaluation (aPROMISE) software and lesions' segmentation in positive scans was performed using this platform. Standardized uptake value (SUV) derived variables; tumour burden variables [whole-body tumour volume (wbTV), whole-body tumour lesion activity (wbTLA) and whole-body mi PSMA (wbPSMA)] and miTNM staging were obtained. Cut-off of PSA and kinetics able to predict PET/CT results were obtained. Associations between disease and mi variables were analysed using ANOVA, Kruskal-Wallis and Spearman's correlation tests. Multivariate analysis was also performed. RESULTS: Two hundred and seventy-five patients were studied. [18F]DCFPyL-PET/CT were positive in 165/275 patients. In multivariate analysis, moment of biochemical recurrence, ISUP group, PSA level and PSAvel showed significant association with the detection rate. miTNM showed significant association with PSA level (p<0.001) and kinetics (p<0.001), being higher in patients with metastatic disease. Both PSA and PSAvel showed moderate correlation with wbTV, wbTLA and wbPSMA (p<0.001). A weak correlation with SUVs was found. Mean wbTV, wbTLA and wbPSMA values were significantly higher in PSA > 2ng/ml, PSAdt ≤ 6 months and PSAvel ≥ 0.2ng/ml/month groups. Also, wbTV (p=0.039) and wbPSMA (p=0.020) were significantly higher in patients with ISUP grade group 5. PSA and PSAvel cut-offs (1.15 ng/ml and 0.065 ng/ml/month) were significantly associated with a positive PET/CT. CONCLUSION: Higher PSA values, unfavourable PSA kinetics and ISUP grade group 5 were robust predictive variables of larger tumour burden variables on [18F]DCFPyL PET/CT assessed by aPROMISE platform.


Assuntos
Lisina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Antígeno Prostático Específico , Neoplasias da Próstata , Carga Tumoral , Ureia , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Idoso , Antígeno Prostático Específico/sangue , Lisina/análogos & derivados , Ureia/análogos & derivados , Ureia/sangue , Pessoa de Meia-Idade , Recidiva , Cinética , Idoso de 80 Anos ou mais , Estudos Retrospectivos
4.
Bioorg Med Chem ; 106: 117753, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749342

RESUMO

The expression of prostate-specific membrane antigen (PSMA) in prostate cancer is 100-1000 times higher than that in normal tissues, and it has shown great advantages in the diagnosis and treatment of prostate cancer. The combination of PSMA and PET imaging technology based on the principle of metabolic imaging can achieve high sensitivity and high specificity for diagnosis. Due to its suitable half-life (109 min) and good positron abundance (97%), as well as its cyclotron accelerated generation, 18F has the potential to be commercialize, which has attracted much attention. In this article, we synthesized a series of fluorosulfate PET tracers targeting PSMA. All four analogues have shown high affinity to PSMA (IC50 = 1.85-5.15 nM). After the radioisotope exchange labeling, [18F]L9 and [18F]L10 have PSMA specific cellular uptake (0.65 ± 0.04% AD and 1.19 ± 0.03% AD) and effectively accumulated in 22Rv1 xenograft mice model. This study demonstrates that PSMA-1007-based PSMA-targeted aryl [18F]fluorosulfate novel tracers have the potential for PET imaging in tumor tissues.


Assuntos
Antígenos de Superfície , Desenho de Fármacos , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Humanos , Masculino , Radioisótopos de Flúor/química , Camundongos , Antígenos de Superfície/metabolismo , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Estrutura Molecular , Linhagem Celular Tumoral , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Relação Estrutura-Atividade
5.
Bioorg Chem ; 153: 107803, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39270526

RESUMO

Prostate-specific membrane antigen (PSMA) is a type II membrane glycoprotein overexpressed in a variety of tumors, especially in nearly all prostate cancers, which makes it a potentially attractive antigen for targeted cancer therapies. More importantly, PSMA, due to no shedding into circulation and efficient internalization after antibody binding, becomes a potential target for antibody-drug conjugates (ADCs), a valid and emerging paradigm of cancer treatment. Four and eight PSMA-directed ADCs have been or are currently being investigated in clinical trials (three of which failed to confirm the promising results while one is currently being evaluated in an ongoing clinical study) and preclinical studies, respectively, for the treatment of PSMA-positive solid tumors, especially prostate cancer. The present study aims to completely review clinical- and preclinical-stage PSMA-directed ADCs.

6.
Malays J Med Sci ; 31(4): 213-217, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39247120

RESUMO

Prostate-specific membrane antigen (PSMA) has proven to be an important target for diagnostic imaging in prostate cancer. As PSMA is overexpressed on the surface of prostate cancer cells, numerous targeted PSMA ligands have been developed. The emergence of PSMA targeting based on small molecules, such as the PSMA-11 ligand (or PSMA-HBED-CC), has led to breakthroughs, such as [68Ga]Ga-PSMA-11, for positron emission tomography (PET) imaging of biochemically recurrent or metastatic castration-resistant prostate cancer (mCRPC). In addition, the recent approval of [177Lu]Lu-PSMA-617 for the treatment of adult patients with PSMA-positive mCRPC represents an important milestone in prostate cancer therapy. These advances underscore the growing confidence in the use of PSMA-targeted radiopharmaceuticals for the diagnosis and treatment of prostate cancer patients. PSMA-targeted radiopharmaceuticals have been shown to significantly impact treatment planning and clinical decision-making and facilitate the customisation of treatment regimens.

7.
Prostate ; 83(11): 1076-1088, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37147881

RESUMO

BACKGROUND: We explored the interrelation between prostate-specific membrane antigen (PSMA) expression on circulating tumor cells (CTCs) and that of solid metastatic lesions as determined by whole-body PSMA-targeted positron emission tomography (PET) to refine the prediction of response to subsequent PSMA-targeted radioligand therapy (RLT). METHODS: A prospective study was performed in 20 patients with advanced mCRPC. Of these, 16 underwent subsequent RLT with [177 Lu]Lu-PSMA-617 at a dose of 7.4 GBq every 6-8 weeks. PSMA expression on CTCs using the CellSearch system was compared to clinical and serological results, and to marker expression in targeted imaging and available histological sections of prostatectomy specimens (19% of RLT patients). Clinical outcome was obtained after two cycles of RLT. RESULTS: Marked heterogeneity of PSMA expression was observed already at first diagnosis in available histological specimens. Targeted whole-body imaging also showed heterogeneous inter- and intra-patient PSMA expression between metastases. Heterogeneity of CTC PSMA expression was partially paralleled by heterogeneity of whole-body tumor burden PSMA expression. Twenty percent of CTC samples showed no PSMA expression, despite unequivocal PSMA expression of solid metastases at PET. A high fraction of PSMA-negative CTCs emerged as the sole predictor of poor RLT response (odds ratio [OR]: 0.9379 [95% confidence interval, CI, 0.8558-0.9902]; p = 0.0160), and was prognostic for both shorter progression-free survival (OR: 1.236 [95% CI, 1.035-2.587]; p = 0.0043) and overall survival (OR: 1.056 [95% CI, 1.008-1.141]; p = 0.0182). CONCLUSION: This proof-of-principle study suggests that liquid biopsy for CTC PSMA expression is complementary to PET for individual PSMA phenotyping of mCRPC.


Assuntos
Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Resultado do Tratamento , Estudos Prospectivos , Carga Tumoral , Antígeno Prostático Específico/metabolismo , Estudos Retrospectivos
8.
Oncologist ; 28(2): 93-104, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36200788

RESUMO

Prostate cancer is the most common cancer among men and the second leading cause of cancer-related death. For patients who develop metastatic disease, tissue-based and circulating-tumor-based molecular and genomic biomarkers have emerged as a means of improving outcomes through the application of precision medicine. However, the benefit is limited to a minority of patients. An additional approach to further characterize the biology of advanced prostate cancer is through the use of phenotypic precision medicine, or the identification and targeting of phenotypic features of an individual patient's cancer. In this review article, we will discuss the background, potential clinical benefits, and limitations of genomic and phenotypic precision medicine in prostate cancer. We will also highlight how the emergence of image-based phenotypic medicine may lead to greater characterization of advanced prostate cancer disease burden and more individualized treatment approaches in patients.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Medicina de Precisão , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Biomarcadores Tumorais/genética , Neoplasias de Próstata Resistentes à Castração/patologia
9.
Biochem Biophys Res Commun ; 651: 107-113, 2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-36801611

RESUMO

We have compared the similarity of the in vivo distribution of the prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) imaging agents [18F]DCFPyL, [68Ga]galdotadipep, and [68Ga]PSMA-11. This study is designed for a further selection of a PSMA-targeted PET imaging agent for the therapeutic evaluation of [177Lu]ludotadipep, our previously developed prostate-specific membrane antigen (PSMA)-targeted prostate cancer therapeutic radiopharmaceutical. In vitro cell uptake was performed to evaluate the affinity to PSMA using PSMA + PC3-PIP, and PSMA- PC3-flu was used for the study. MicroPET/CT 60 min dynamic imaging and biodistribution were performed at 1, 2, and 4 h after injection. Autoradiography and immunohistochemistry were performed to evaluate the PSMA + tumor target efficiency. In the microPET/CT image, [68Ga]PSMA-11 showed the highest uptake in the kidney among all three compounds. [18F]DCFPyL and [68Ga]PSMA-11 showed similar patterns of in vivo biodistribution and high tumor targeting efficiency, similar to those of[68Ga]galdotadipep. All three agents showed high uptake in tumor tissue on autoradiography, and PSMA expression was confirmed by immunohistochemistry. Thus, [18F]DCFPyL or [68Ga]PSMA-11 can be used as a PET imaging agent to monitor [177Lu]ludotadipep therapy in prostate cancer patients.


Assuntos
Radioisótopos de Gálio , Neoplasias da Próstata , Humanos , Masculino , Detecção Precoce de Câncer , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos , Distribuição Tecidual , Antígeno Prostático Específico/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-38012448

RESUMO

PURPOSE: Prostate-specific membrane antigen (PSMA) is increasingly considered as a molecular target to achieve precision surgery for prostate cancer. A Delphi consensus was conducted to explore expert views in this emerging field and to identify knowledge and evidence gaps as well as unmet research needs that may help change practice and improve oncological outcomes for patients. METHODS: One hundred and five statements (scored by a 9-point Likert scale) were distributed through SurveyMonkey®. Following evaluation, a consecutive second round was performed to evaluate consensus (16 statements; 89% response rate). Consensus was defined using the disagreement index, assessed by the research and development project/University of California, Los Angeles appropriateness method. RESULTS: Eighty-six panel participants (72.1% clinician, 8.1% industry, 15.1% scientists, and 4.7% other) participated, most with a urological background (57.0%), followed by nuclear medicine (22.1%). Consensus was obtained on the following: (1) The diagnostic PSMA-ligand PET/CT should ideally be taken < 1 month before surgery, 1-3 months is acceptable; (2) a 16-20-h interval between injection of the tracer and surgery seems to be preferred; (3) PSMA targeting is most valuable for identification of nodal metastases; (4) gamma, fluorescence, and hybrid imaging are the preferred guidance technologies; and (5) randomized controlled clinical trials are required to define oncological value. Regarding surgical margin assessment, the view on the value of PSMA-targeted surgery was neutral or inconclusive. A high rate of "cannot answer" responses indicates further study is necessary to address knowledge gaps (e.g., Cerenkov or beta-emissions). CONCLUSIONS: This Delphi consensus provides guidance for clinicians and researchers that implement or develop PSMA-targeted surgery technologies. Ultimately, however, the consensus should be backed by randomized clinical trial data before it may be implemented within the guidelines.

11.
Eur J Nucl Med Mol Imaging ; 50(9): 2872-2884, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37060367

RESUMO

PURPOSE: Incomplete resection of prostate cancer (PCa) results in increased risk of disease recurrence. Combined fluorescence-guided surgery with tumor-targeted photodynamic therapy (tPDT) may help to achieve complete tumor eradication. We developed a prostate-specific membrane antigen (PSMA) ligand consisting of a DOTA chelator for 111In labeling and a fluorophore/photosensitizer IRDye700DX (PSMA-N064). We evaluated the efficacy of PSMA-tPDT using PSMA-N064 in cell viability assays, a mouse xenograft model and in an ex vivo incubation study on fresh human PCa tissue. METHODS: In vitro, therapeutic efficacy of PSMA-N064 was evaluated using PSMA-positive LS174T cells and LS174T wild-type cells. In vivo, PSMA-N064-mediated tPDT was tested in immunodeficient BALB/c mice-bearing PSMA-positive LS174T xenografts. Tumor growth and survival were compared to control mice that received either NIR light or ligand injection only. Ex vivo tPDT efficacy was evaluated in excised fresh human PCa tissue incubated with PSMA-N064. RESULTS: In vitro, tPDT led to a PSMA-specific light- and ligand dose-dependent loss in cell viability. In vivo, tPDT-induced tumor cell apoptosis, delayed tumor growth, and significantly improved survival (p = 0.004) of the treated PSMA-positive tumor-bearing mice compared with the controls. In fresh ex vivo human PCa tissue, apoptosis was significantly increased in PSMA-tPDT-treated samples compared to non-treated control samples (p = 0.037). CONCLUSION: This study showed the feasibility of PSMA-N064-mediated tPDT in cell assays, a xenograft model and excised fresh human PCa tissue. This paves the way to investigate the impact of in vivo PSMA-tPDT on surgical outcome in PCa patients.


Assuntos
Fotoquimioterapia , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Medicina de Precisão , Ligantes , Recidiva Local de Neoplasia/tratamento farmacológico , Glutamato Carboxipeptidase II , Antígenos de Superfície , Fotoquimioterapia/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral
12.
Eur J Nucl Med Mol Imaging ; 50(6): 1811-1821, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702927

RESUMO

PURPOSE: The currently used scheme for radioligand therapy (RLT) of patients with metastatic castration-resistant prostate cancer (mCRPC) consists of 4-6 cycles of 6.0-7.4 GBq [177Lu]Lu-PSMA-617 each. This standard treatment scheme has proved safe and effective resulting in objective response in most patients with no significant toxicity. Many patients, however, show high-volume residual tumor burden after the sixth cycle and may benefit from treatment continuation. Extended treatment with additional cycles has been withheld due to concerns on potential increased toxicity. METHODS: Twenty-six patients with high-volume residual tumor burden (according to CHAARTED) after standard RLT with [177Lu]Lu-PSMA-617 and no alternative treatment option received additional RLT cycles reaching a median of 10 (range 7-16) cycles with a mean activity of 7.4 ± 0.9 GBq per cycle. Response assessment with [68Ga]Ga-PSMA-11 PET/CT was done every 2-3 cycles or if disease progression was clinically suspected or based on change in PSA value (according to the PCWG3 criteria). Toxicity was measured using routine blood work up including blood counts, liver and renal function, and was graded according to CTCAE v5.0 criteria. Survival outcome was calculated based on the Kaplan-Meier method. RESULTS: Further PSA decline of 33 ± 28% during the extended treatment was observed in 21/26 (81%) patients, whereas 5/26 (19%) patients showed a PSA increase; correspondingly in 11/21 patients with an initial response (PR or SD) to extended cycles, treatment was discontinued due to progressive disease, whereas six (23%) patients achieved low-volume residual disease. Two (8%) patients died without showing progression, and two (8%) patients are still under therapy. The median progression-free survival was 19 (95% CI: 15-23) months, and the overall survival was 29 (95% CI: 18-40) months. Grade ≥ 3 hematological toxicities occurred in 4/26 (15%) patients during treatment extension, and nephrotoxicity (grade ≥ 3) was observed in 1/26 (4%) patient during the follow-up. CONCLUSION: Extended radioligand therapy is a feasible treatment option in patients with high-volume residual tumor after the completion of standard treatment with six cycles of [177Lu]Lu-PSMA-617. Improved survival and the acceptable safety profile warrant further investigation of the concept of additional cycles in selected patients.


Assuntos
Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/radioterapia , Resultado do Tratamento , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasia Residual/induzido quimicamente , Dipeptídeos/efeitos adversos , Compostos Heterocíclicos com 1 Anel/efeitos adversos , Lutécio/uso terapêutico , Estudos Retrospectivos
13.
Eur J Nucl Med Mol Imaging ; 50(9): 2899-2909, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148297

RESUMO

RATIONALE: In patients with biochemical recurrence of prostate cancer (BCR), preliminary data suggest that prostate-specific membrane antigen (PSMA) ligand radiotracers labeled with zirconium-89 (89Zr; half-life ~ 78.41 h), which allow imaging ≥ 24 h post-injection, detect suspicious lesions that are missed when using tracers incorporating short-lived radionuclides. MATERIALS AND METHODS: To confirm [89Zr]Zr-PSMA-617 positron emission tomography/computed tomography (PET/CT) detection efficacy regarding such lesions, and compare quality of 1-h, 24-h, and 48-h [89Zr]Zr-PSMA-617 scans, we retrospectively analyzed visual findings and PET variables reflecting lesional [89Zr]Zr-PSMA-617 uptake and lesion-to-background ratio. The cohort comprised 23 men with BCR post-prostatectomy, median (minimum-maximum) prostate-specific antigen (PSA) 0.54 (0.11-2.50) ng/mL, and negative [68Ga]Ga-PSMA-11 scans 40 ± 28 d earlier. Primary endpoints were percentages of patients with, and classifications of, suspicious lesions. RESULTS: Altogether, 18/23 patients (78%) had 36 suspicious lesions (minimum-maximum per patient: 1-4) on both 24-h and 48-h scans (n = 33 lesions) or only 48-h scans (n = 3 lesions). Only one lesion appeared on a 1-h scan. Lesions putatively represented local recurrence in 11 cases, and nodal or bone metastasis in 21 or 4 cases, respectively; 1/1 lesion was histologically confirmed as a nodal metastasis. In all 15 patients given radiotherapy based on [89Zr]Zr-PSMA-617 PET/CT, PSA values decreased after this treatment. Comparison of PET variables in 24-h vs 48-h scans suggested no clear superiority of either regarding radiotracer uptake, but improved lesion-to-background ratio at 48 h. CONCLUSIONS: In men with BCR and low PSA, [89Zr]Zr-PSMA-617 PET/CT seems effective in finding prostate malignancy not seen on [68Ga]Ga-PSMA-11 PET/CT. The higher detection rates and lesion-to-background ratios of 48-h scans versus 24-h scans suggest that imaging at the later time may be preferable. Prospective study of [89Zr]Zr-PSMA-617 PET/CT is warranted.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos de Gálio , Estudos Prospectivos , Estudos Retrospectivos , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/patologia , Recidiva
14.
Mol Pharm ; 20(2): 1435-1446, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36696174

RESUMO

Since prostate-specific membrane antigen (PSMA) is upregulated in nearly all stages of prostate cancer (PCa), PSMA can be considered a viable diagnostic biomarker and treatment target in PCa. In this study, we have developed five 68Ga-labeled PSMA-targeted tracers, 68Ga-Flu-1, 68Ga-Flu-2, 68Ga-9-Ant, 68Ga-1-Nal, and 68Ga-1-Noi, to investigate the effect of lipophilic bulky groups on the pharmacokinetics of PSMA inhibitors compared to 68Ga-PSMA-11 and then explore their in vitro and in vivo properties. 68Ga-labeled PSMA inhibitors were obtained in 88.53-99.98% radiochemical purity and at the highest specific activity of up to 20 MBq/µg. These compounds revealed a highly efficient uptake and internalization into LNCaP cells and increased over time. PET imaging and biodistribution studies were performed in mice bearing PSMA expressing LNCaP prostate cancer xenografts. All tracers enabled clear visualization of tumors in PET images with excellent tumor-to-background contrast. The biodistribution studies showed that all these radioligands were excreted mainly via the renal pathway. The in vivo biodistribution of 68Ga-Flu-1 revealed higher tumor uptake (40.11 ± 9.24 %ID/g at 2 h p.i.) compared to 68Ga-PSMA-11 (28.10 ± 5.96 %ID/g at 2 h p.i.). Both in vitro and in vivo experiments showed that chemical modification of the lysine fragment significantly impacts tumor-targeting and pharmacokinetic properties. Great potential to serve as new PET tracers for prostate cancer has been revealed with these radiotracers─68Ga-Flu-1 in particular.


Assuntos
Radioisótopos de Gálio , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Radioisótopos de Gálio/farmacocinética , Distribuição Tecidual , Ureia , Linhagem Celular Tumoral , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos/farmacocinética
15.
Bioorg Med Chem Lett ; 91: 129382, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348571

RESUMO

Prostate-specific membrane antigen (PSMA) has been proved as a specific target for diagnosis and treatment of prostate cancer (PCa). Recently, oxalyldiaminopropionic acid (ODAP)-Urea-based ligands showed the potential as a new scaffold for developing radiotracers to image PCa. In this study, we synthesized seven ODAP-Urea-Lys derivatives characterized with p-bromobenzyl group conjugated to lysine. The ligands showed medium-to-high potency, with Ki values ranging from 27.9 nM to 0.94 nM. The ligands could be efficiently radiolabeled with 68Ga, in high purity. Radioligands were stable and showed PSMA specific cellular uptake, in PSMA++ LNCaP cells and PSMA+ 22Rv1 cells over PSMA- PC3 cells. MicroPET imaging was performed in 22Rv1 tumor-bearing mice and 68Ga-ligand-1 showed the best characteristics among the seven ligands, with the highest tumor uptake (SUVmax: 0.56 ± 0.07). A biodistribution study was also performed. ODAP-Urea-Lys-p-bromobenzyl could be used to image prostate cancer in vivo, and the ligands could have high binding potency. The future investigation is still necessary to improve the tumor-specific uptake of this class of ligands and reducing the non-specific uptake in normal organs.


Assuntos
Neoplasias da Próstata , Ureia , Masculino , Humanos , Animais , Camundongos , Ureia/química , Lisina/metabolismo , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons/métodos , Ligantes , Distribuição Tecidual , Linhagem Celular Tumoral , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo
16.
Bioorg Chem ; 141: 106889, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813074

RESUMO

Most patients with advanced prostate cancer (PCa) will develop metastatic castration-resistant prostate cancer (mCRPC) after androgen deprivation therapy, at this time the tumor enters the end stage, and the clinical treatment is very complicated, which requires rationalization of drugs to prolong the life of patients while improving their quality of life. Prostate-specific membrane antigen (PSMA) is a promising biological target for drug delivery in mCRPC due to its high level of specific expression in PCa cell membranes and low expression in normal tissues. Non-radioactive PSMA-targeted small molecule-drug conjugates (SMDCs) are gradually becoming a heat of discovery due to their good affinity and specificity; simple synthesis steps and transport management methods. Non-radioactive PSMA-targeted SMDCs under investigation can be divided into two categories: SMDCs and dual-ligand coupled drugs, among which SMDCs are the most widespread form of this type of conjugate. SMDCs have three key components: cytotoxic load, linker, and small molecule targeting ligands. SMDCs are internalized into the cell after binding to PSMA on the cell membrane and stored in endosomes and lysosomes, where they are usually enzymatically cleaved to allow precise release of cytotoxic molecules and uniform diffusion into the tumor tissue. More than a dozen non-radioactive PSMA-targeted SMDCs have been developed, many of which have shown favorable properties in both in vitro and in vivo evaluations, demonstrating more favorable results than unmodified cytotoxic drugs. Therefore, non-radioactive PSMA-targeted SMDCs have great therapeutic potential for mCRPC as a form of targeted therapy.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Antagonistas de Androgênios , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Qualidade de Vida
17.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569712

RESUMO

Prostate-specific membrane antigen (PSMA)-based imaging improved the detection of primary, recurrent and metastatic prostate cancer. However, in certain patients, a low PSMA surface expression can be a limitation for this promising diagnostic tool. Pharmacological induction of PSMA might be useful to further improve the detection rate of PSMA-based imaging. To achieve this, we tested dutasteride (Duta)-generally used for treatment of benign prostatic enlargement-and lovastatin (Lova)-a compound used to reduce blood lipid concentrations. We aimed to compare the individual effects of Duta and Lova on cell proliferation as well as PSMA expression. In addition, we tested if a combination treatment using lower concentrations of Duta and Lova can further induce PSMA expression. Our results show that a treatment with ≤1 µM Duta and ≥1 µM Lova lead to a significant upregulation of whole and cell surface PSMA expression in LNCaP, C4-2 and VCaP cells. Lower concentrations of Duta and Lova in combination (0.5 µM Duta + 0.5 µM Lova or 0.5 µM Duta + 1 µM Lova) were further capable of enhancing PSMA protein expression compared to a single compound treatment using higher concentrations in all tested cell lines (LNCaP, C4-2 and VCaP).


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Dutasterida/farmacologia , Dutasterida/metabolismo , Dutasterida/uso terapêutico , Próstata/patologia , Lovastatina/farmacologia , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Neoplasias da Próstata/metabolismo , Antígeno Prostático Específico/metabolismo , Linhagem Celular Tumoral
18.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446782

RESUMO

Prostate-specific membrane antigen (PSMA) is a well-validated prostate cancer marker but reported PSMA-targeted tracers derived from the Lys-urea-Glu pharmacophore including the clinically validated [99mTc]Tc-EDDA/HYNIC-iPSMA have high off-target uptake in kidneys, spleen, and salivary glands. In this study, we synthesized and evaluated three novel 99mTc-labeled PSMA-targeted tracers and investigated if the tracers derived from the Lys-urea-Aad pharmacophore could have minimized uptake in off-target organs/tissues. In vitro competition binding assays showed that compared with HYNIC-iPSMA, the three novel ligands had slightly weaker PSMA binding affinity (average Ki = 3.11 vs. 8.96-11.6 nM). Imaging and ex vivo biodistribution studies in LNCaP tumor-bearing mice showed that [99mTc]Tc-EDDA/HYNIC-iPSMA and the three novel tracers successfully visualized LNCaP tumor xenografts in SPECT images and were excreted mainly via the renal pathway. The average tumor uptake at 1 h post-injection varied from 5.40 to 18.8%ID/g, and the tracers derived from the Lys-urea-Aad pharmacophore had much lower uptake in the spleen and salivary glands. Compared with the clinical tracer [99mTc]Tc-EDDA/HYNIC-iPSMA, the Lys-urea-Aad-derived [99mTc]Tc-EDDA-KL01127 had lower background uptake and superior tumor-to-background contrast ratios and is therefore promising for clinical translation to detect prostate cancer lesions with SPECT.


Assuntos
Neoplasias da Próstata , Ureia , Masculino , Humanos , Camundongos , Animais , Distribuição Tecidual , Farmacóforo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Neoplasias da Próstata/patologia
19.
Small ; 18(38): e2203325, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35986691

RESUMO

Prostate cancer (PCa) with prostate-specific membrane antigen (PSMA)-specific high expression is well suited for molecularly targeted theranostics. PSMA expression correlates with the malignancy of PCa, and its dimeric form can promote tumor progression by exerting enzymatic activity to activate downstream signal transduction. However, almost no studies have shown that arresting the procancer signaling of the PSMA receptors themselves can cause tumor cell death. Meanwhile, supramolecular self-assembling peptides are widely used to design anticancer agents due to their unique and excellent properties. Here, a PSMA-targeting supramolecular self-assembling nanotheranostic agent, DBT-2FFGACUPA, which actively targets PSMA receptors on PCa cell membranes and induces them to enter the cell and form large aggregates, is developed. This process not only selectively images PSMA-positive tumor cells but also suppresses the downstream procancer signals of PSMA, causing tumor cell death. This work provides an alternative approach and an advanced agent for molecularly targeted theranostics options in PCa that can induce tumor cell death without relying on any reported anticancer drugs.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Humanos , Masculino , Polímeros , Neoplasias da Próstata/tratamento farmacológico , Transdução de Sinais
20.
Eur J Nucl Med Mol Imaging ; 49(6): 2086-2095, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34962583

RESUMO

BACKGROUND: 68 Ga-PSMA PET/CT has been widely used in patients with prostate cancer. Due to the limited axial field of view of conventional PET scanners, whole-body dynamic 68 Ga-PSMA PET/CT has not been performed. We investigated the time-activity curves (TACs) of prostate cancer pathological lesions and physiologic bladder activity to determine the optimal 68 Ga-PSMA PET/CT imaging time by total-body (TB) PET/CT. METHODS: Dynamic TB-PET performed on 11 patients with prostate cancer was analyzed. TACs were obtained by drawing regions of interest in normal organs and pathological lesions (primary prostate lesions and lymph nodes and bone metastases). We evaluated the 68 Ga-PSMA uptake pattern of normal organs, urinary bladder, and pathological lesions. RESULTS: The urinary bladder TAC increased slowly between 180 and 330 s post-injection and then rapidly between 5.5 and 60.0 min post-injection. The pathological lesion uptake increased rapidly during the first 5 min post-injection and then slowly through the remaining 55 min. Six minutes post-injection was the optimal time with the highest pathological lesion SUVmean values still higher than the urinary bladder activity value. However, these prostate lesion, lymph node metastasis, and bone metastasis SUVmean values were one-third, one-half, and one-half the corresponding values 60 min post-injection, suggesting that early imaging might miss low PSMA uptake lesions. A minimum of 35 min post-injection was required for the pathological lesions to have SUVmean values similar to the corresponding values at 60 min post-injection (all P > 0.05), even though the pathological lesion SUVmean values showed a continuous upward trend through the 60 min. CONCLUSIONS: Combining early dynamic 68 Ga-PSMA PET (75-360 s) and conventional static imaging 60 min post-injection could avoid the urinary bladder activity interference to better detect pathological lesions and lesions with relatively low PSMA uptake. The pathological lesion SUVmean values at 35-59 min and 60 min post-injection were similar, so 68 Ga-PSMA PET imaging could also be made at 35-59 min post-injection.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Neoplasias Ósseas/secundário , Ácido Edético , Radioisótopos de Gálio , Humanos , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Tomografia Computadorizada por Raios X , Bexiga Urinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA