Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 122(4): 514-533, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39245639

RESUMO

Bacteria adapt the biosynthesis of their envelopes to specific growth conditions and prevailing stress factors. Peptidoglycan (PG) is the major component of the cell wall in Gram-positive bacteria, where PASTA kinases play a central role in PG biosynthesis regulation. Despite their importance for growth, cell division and antibiotic resistance, the mechanisms of PASTA kinase activation are not fully understood. ReoM, a recently discovered cytosolic phosphoprotein, is one of the main substrates of the PASTA kinase PrkA in the Gram-positive human pathogen Listeria monocytogenes. Depending on its phosphorylation, ReoM controls proteolytic stability of MurA, the first enzyme in the PG biosynthesis pathway. The late cell division protein GpsB has been implicated in PASTA kinase signalling. Consistently, we show that L. monocytogenes prkA and gpsB mutants phenocopied each other. Analysis of in vivo ReoM phosphorylation confirmed GpsB as an activator of PrkA leading to the description of structural features in GpsB that are important for kinase activation. We further show that ReoM phosphorylation is growth phase-dependent and that this kinetic is reliant on the protein phosphatase PrpC. ReoM phosphorylation was inhibited in mutants with defects in MurA degradation, leading to the discovery that MurA overexpression prevented ReoM phosphorylation. Overexpressed MurA must be able to bind its substrates and interact with ReoM to exert this effect, but the extracellular PASTA domains of PrkA or MurJ flippases were not required. Our results indicate that intracellular signals control ReoM phosphorylation and extend current models describing the mechanisms of PASTA kinase activation.


Assuntos
Proteínas de Bactérias , Listeria monocytogenes , Peptidoglicano , Fosforilação , Listeria monocytogenes/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Peptidoglicano/metabolismo , Citosol/metabolismo , Parede Celular/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Regulação Bacteriana da Expressão Gênica
2.
Mol Cell ; 66(2): 234-246.e5, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431231

RESUMO

According to the N-end rule, the N-terminal residue of a protein determines its stability. In bacteria, the adaptor ClpS mediates proteolysis by delivering substrates bearing specific N-terminal residues to the protease ClpAP. We now report that the Salmonella adaptor ClpS binds to the N terminus of the regulatory protein PhoP, resulting in PhoP degradation by ClpAP. We establish that the PhoP-activated protein MgtC protects PhoP from degradation by outcompeting ClpS for binding to PhoP. MgtC appears to act exclusively on PhoP, as it did not alter the stability of a different ClpS-dependent ClpAP substrate. Removal of five N-terminal residues rendered PhoP stability independent of both the clpS and mgtC genes. By preserving PhoP protein levels, MgtC enables normal temporal transcription of PhoP-activated genes. The identified mechanism provides a simple means to spare specific substrates from an adaptor-dependent protease.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Endopeptidase Clp/metabolismo , Salmonella typhimurium/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ligação Competitiva , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Endopeptidase Clp/química , Endopeptidase Clp/genética , Regulação Bacteriana da Expressão Gênica , Meia-Vida , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteólise , Salmonella typhimurium/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Fatores de Tempo , Transcrição Gênica
3.
J Bacteriol ; 202(12)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32253340

RESUMO

Listeria monocytogenes is a model facultative intracellular pathogen. Tight regulation of virulence proteins is essential for a successful infection, and the gene encoding the annotated thioredoxin YjbH was identified in two forward genetic screens as required for virulence factor production. Accordingly, an L. monocytogenes strain lacking yjbH is attenuated in a murine model of infection. However, the function of YjbH in L. monocytogenes has not been investigated. Here, we provide evidence that L. monocytogenes YjbH is involved in the nitrosative stress response, likely through its interaction with the redox-responsive transcriptional regulator SpxA1. YjbH physically interacted with SpxA1, and our data support a model in which YjbH is a protease adaptor that regulates SpxA1 protein abundance. Whole-cell proteomics identified eight additional proteins whose abundance was altered by YjbH, and we demonstrated that YjbH physically interacted with each in bacterial two-hybrid assays. Thioredoxin proteins canonically require active motif cysteines for function, but thioredoxin activity has not been tested for L. monocytogenes YjbH. We demonstrated that cysteine residues of the YjbH thioredoxin domain active motif are essential for L. monocytogenes sensitivity to nitrosative stress, cell-to-cell spread in a tissue culture model of infection, and several protein-protein interactions. Together, these results demonstrated that the function of YjbH in L. monocytogenes requires its thioredoxin active motif and that YjbH has a role in the posttranslational regulation of several proteins, including SpxA1.IMPORTANCE The annotated thioredoxin YjbH in Listeria monocytogenes has been implicated in virulence, but its function in the cell is unknown. In other bacterial species, YjbH is a protease adaptor that mediates degradation of the transcriptional regulator Spx. Here, we investigated the function of L. monocytogenes YjbH and demonstrated its role in the nitrosative stress response and posttranslational regulation of several proteins with which YjbH physically interacts, including SpxA1. Furthermore, we demonstrated that the cysteine residues of the YjbH thioredoxin active motif are required for the nitrosative stress response, cell-to-cell spread, and some protein-protein interactions. YjbH is widely conserved among Firmicutes, and this work reveals its unique requirement of the thioredoxin-active motif in L. monocytogenes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Listeria monocytogenes/química , Listeria monocytogenes/genética , Listeriose/microbiologia , Ligação Proteica , Alinhamento de Sequência , Tiorredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA