Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216233

RESUMO

The primary cilium is a hair-like immotile organelle with specific membrane receptors, including the receptor of Hedgehog signaling, smoothened. The cilium organized in preosteoblasts promotes differentiation of the cells into osteoblasts (osteoblast differentiation) by mediating Hedgehog signaling to achieve bone formation. Notably, 4.1G is a plasma membrane-associated cytoskeletal protein that plays essential roles in various tissues, including the peripheral nervous system, testis, and retina. However, its function in the bone remains unexplored. In this study, we identified 4.1G expression in the bone. We found that, in the 4.1G-knockout mice, calcium deposits and primary cilium formation were suppressed in the trabecular bone, which is preosteoblast-rich region of the newborn tibia, indicating that 4.1G is a prerequisite for osteoblast differentiation by organizing the primary cilia in preosteoblasts. Next, we found that the primary cilium was elongated in the differentiating mouse preosteoblast cell line MC3T3-E1, whereas the knockdown of 4.1G suppressed its elongation. Moreover, 4.1G-knockdown suppressed the induction of the cilia-mediated Hedgehog signaling and subsequent osteoblast differentiation. These results demonstrate a new regulatory mechanism of 4.1G in bone formation that promotes the primary ciliogenesis in the differentiating preosteoblasts and induction of cilia-mediated osteoblast differentiation, resulting in bone formation at the newborn stage.


Assuntos
Diferenciação Celular/fisiologia , Cílios/metabolismo , Cílios/fisiologia , Proteínas dos Microfilamentos/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Osteogênese/fisiologia , Células 3T3 , Animais , Osso e Ossos/metabolismo , Osso e Ossos/fisiologia , Calcificação Fisiológica/fisiologia , Linhagem Celular , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
2.
J Biol Chem ; 291(5): 2170-80, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26644476

RESUMO

Protein 4.1G is a membrane skeletal protein that can serve as an adapter between transmembrane proteins and the underlying membrane skeleton. The function of 4.1G remains largely unexplored. Here, using 4.1G knockout mouse embryonic fibroblasts (MEFs) as a model system, we explored the function of 4.1G in motile cells. We show that the adhesion, spreading, and migration of 4.1G(-/-) MEF cells are impaired significantly. We further show that, although the total cellular expression of ß1 integrin is unchanged, the surface expression of ß1 integrin and its active form are decreased significantly in 4.1G(-/-) MEF cells. Moreover, the phosphorylation of focal adhesion kinase, a downstream component of the integrin-mediated signal transduction pathway, is suppressed in 4.1G(-/-) MEF cells. Co-immunoprecipitation experiments and in vitro binding assays showed that 4.1G binds directly to ß1 integrin via its membrane-binding domain. These findings identified a novel role of 4.1G in cell adhesion, spreading, and migration in MEF cells by modulating the surface expression of ß1 integrin and subsequent downstream signal transduction.


Assuntos
Fibroblastos/metabolismo , Regulação da Expressão Gênica , Integrina beta1/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Adesão Celular , Movimento Celular , Citoesqueleto/metabolismo , Citometria de Fluxo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Glutationa Transferase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Estrutura Terciária de Proteína , Transdução de Sinais
3.
Genes (Basel) ; 14(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37895291

RESUMO

The protein 4.1 and membrane palmitoylated protein (MPP) families were originally found as components in the erythrocyte membrane skeletal protein complex, which helps maintain the stability of erythrocyte membranes by linking intramembranous proteins and meshwork structures composed of actin and spectrin under the membranes. Recently, it has been recognized that cells and tissues ubiquitously use this membrane skeletal system. Various intramembranous proteins, including adhesion molecules, ion channels, and receptors, have been shown to interact with the 4.1 and MPP families, regulating cellular and tissue dynamics by binding to intracellular signal transduction proteins. In this review, we focus on our previous studies regarding genetically modified animal models, especially on 4.1G, MPP6, and MPP2, to describe their functional roles in the peripheral nervous system, the central nervous system, the testis, and bone formation. As the membrane skeletal proteins are located at sites that receive signals from outside the cell and transduce signals inside the cell, it is necessary to elucidate their molecular interrelationships, which may broaden the understanding of cell and tissue functions.


Assuntos
Proteínas do Citoesqueleto , Proteínas de Membrana , Humanos , Masculino , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais Geneticamente Modificados , Proteínas do Citoesqueleto/metabolismo , Canais Iônicos , Sistema Nervoso Periférico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA