Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852861

RESUMO

The genome of influenza virus (viral RNA [vRNA]) is associated with the nucleoprotein (NP) and viral RNA-dependent RNA polymerases and forms helical viral ribonucleoprotein (vRNP) complexes. The NP-vRNA complex is the biologically active template for RNA synthesis by the viral polymerase. Previously, we identified human pre-mRNA processing factor 18 (Prp18) as a stimulatory factor for viral RNA synthesis using a Saccharomyces cerevisiae replicon system and a single-gene deletion library of Saccharomyces cerevisiae (T. Naito, Y. Kiyasu, K. Sugiyama, A. Kimura, R. Nakano, A. Matsukage, and K. Nagata, Proc Natl Acad Sci USA, 104:18235-18240, 2007, https://doi.org/10.1073/pnas.0705856104). In infected Prp18 knockdown (KD) cells, the synthesis of vRNA, cRNA, and viral mRNAs was reduced. Prp18 was found to stimulate in vitro viral RNA synthesis through its interaction with NP. Analyses using in vitro RNA synthesis reactions revealed that Prp18 dissociates newly synthesized RNA from the template after the early elongation step to stimulate the elongation reaction. We found that Prp18 functions as a chaperone for NP to facilitate the formation of NP-RNA complexes. Based on these results, it is suggested that Prp18 accelerates influenza virus RNA synthesis as an NP chaperone for the processive elongation reaction. IMPORTANCE: Templates for viral RNA synthesis of negative-stranded RNA viruses are not naked RNA but rather RNA encapsidated by viral nucleocapsid proteins forming vRNP complexes. However, viral basic proteins tend to aggregate under physiological ionic strength without chaperones. We identified the pre-mRNA processing factor Prp18 as a stimulatory factor for influenza virus RNA synthesis. We found that one of the targets of Prp18 is NP. Prp18 facilitates the elongation reaction of viral polymerases by preventing the deleterious annealing of newly synthesized RNA to the template. Prp18 functions as a chaperone for NP to stimulate the formation of NP-RNA complexes. Based on these results, we propose that Prp18 may be required to maintain the structural integrity of vRNP for processive template reading.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Nucleoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Viral/biossíntese , Linhagem Celular , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Influenza Humana/genética , Ligação Proteica , Fatores de Processamento de RNA/genética , Ribonucleoproteínas/metabolismo , Elongação da Transcrição Genética , Transcrição Gênica
2.
Biopolymers ; 101(5): 504-16, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24122396

RESUMO

The effect of protein and chemical chaperones and crowders on thermal stability and aggregation of apoform of rabbit muscle glycogen phosphorylase b (apoPhb) has been studied at 37°C. Proline suppressed heat-induced loss in ability of apoPhb to reconstitution at 37°C, whereas α-crystallin did not reveal a protective action. To compare the antiaggregation activity of intact and crosslinked α-crystallins, an adsorption capacity (AC) of a protein chaperone with respect to a target protein was estimated. This parameter is a measure of the antiaggregation activity. Crosslinking of α-crystallin results in 11-fold decrease in the initial AC. The nonlinear character of the relative initial rate of apoPhb aggregation versus the [intact α-crystallin]/[apoPhb] ratio plot is indicative of the decrease in the AC of α-crystallin with increasing the [α-crystallin]/[apoPhb] ratio and can be interpreted as an evidence for dynamic chaperone structure and polydispersity of α-crystallin-target protein complexes. As for chemical chaperones, a semisaturation concentration of the latter was used as a characteristic of the antiaggregation activity. A decrease in the semisaturation concentration for proline was observed in the presence of the crowders (polyethylene glycol and Ficoll-70).


Assuntos
Apoproteínas/metabolismo , Temperatura Alta , Substâncias Macromoleculares/farmacologia , Chaperonas Moleculares/farmacologia , Fosforilase b/metabolismo , Agregados Proteicos/efeitos dos fármacos , Desnaturação Proteica/efeitos dos fármacos , Animais , Área Sob a Curva , Bovinos , Reagentes de Ligações Cruzadas/farmacologia , Cinética , Polietilenoglicóis/farmacologia , Prolina/farmacologia , Coelhos , alfa-Cristalinas/farmacologia
3.
Cureus ; 15(3): e35756, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37020478

RESUMO

The sigma-1 and sigma-2 receptors were first discovered in the 1960s and were thought to be a form of opioid receptors initially. Over time, more was gradually learned about these receptors, which are actually protein chaperones, and many of their unique or unusual properties can contribute to a range of important new therapeutic applications. These sigma receptors translocate in the body and regulate calcium homeostasis and mitochondrial bioenergetics and they also have neuroprotective effects. The ligands to which these sigma receptors respond are several and dissimilar, including neurosteroids, neuroleptics, and cocaine. There is controversy as to their endogenous ligands. Sigma receptors are also involved in the complex processes of cholesterol homeostasis and protein folding. While previous work on this topic has been limited, research has been conducted in multiple disease states, such as addiction, aging. Alzheimer's disease, cancer, psychiatric disorders, pain and neuropathic pain, Parkinson's disease, and others. There is currently increasing interest in sigma-1 and sigma-2 receptors as they provide potential therapeutic targets for many disease indications.

4.
Open Biol ; 10(11): 200282, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33234071

RESUMO

Several neurodegenerative diseases of humans and animals are caused by the misfolded prion protein (PrPSc), a self-propagating protein infectious agent that aggregates into oligomeric, fibrillar structures and leads to cell death by incompletely understood mechanisms. Work in multiple biological model systems, from simple baker's yeast to transgenic mouse lines, as well as in vitro studies, has illuminated molecular and cellular modifiers of prion disease. In this review, we focus on intersections between PrP and the proteostasis network, including unfolded protein stress response pathways and roles played by the powerful regulators of protein folding known as protein chaperones. We close with analysis of promising therapeutic avenues for treatment enabled by these studies.


Assuntos
Modelos Biológicos , Proteínas Priônicas/metabolismo , Proteostase , Transdução de Sinais , Adulto , Idoso , Idoso de 80 Anos ou mais , Amiloide , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/metabolismo , Terapia de Alvo Molecular , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Doenças Priônicas/diagnóstico , Doenças Priônicas/etiologia , Doenças Priônicas/metabolismo , Doenças Priônicas/terapia , Proteínas Priônicas/química , Dobramento de Proteína , Relação Estrutura-Atividade , Leveduras
5.
ACS Synth Biol ; 9(2): 329-342, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31769967

RESUMO

An intriguing aspect of protein synthesis is how cotranslational events are managed inside the cell. In this study, we developed an in vivo bimolecular fluorescence complementation assay coupled to SecM stalling (BiFC-SecM) to study how codon usage influences the interactions of ribosome-associating factors that occur cotranslationally. We profiled ribosomal associations of a number of proteins, and observed differential association of chaperone proteins TF, DnaK, GroEL, and translocation factor Ffh as a result of introducing synonymous codon substitutions that change the affinity of the translating sequence to the ribosomal anti-Shine-Dalgarno (aSD) sequence. The use of pausing sequences within proteins regulates their transit within the translating ribosome. Our results indicate that the dynamics between cellular factors and the new polypeptide chain are affected by how codon composition is designed. Furthermore, associating factors may play a role in processes including protein quality control (folding and degradation) and cellular respiration.


Assuntos
Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Códon/metabolismo , Escherichia coli/metabolismo , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Chaperonas Moleculares/metabolismo , RNA Mensageiro/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo
6.
Emerg Top Life Sci ; 4(3): 331-342, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32744309

RESUMO

Over the past years, liquid-liquid phase separation (LLPS) has emerged as a ubiquitous principle of cellular organization implicated in many biological processes ranging from gene expression to cell division. The formation of biological condensates, like the nucleolus or stress granules, by LLPS is at its core a thermodynamic equilibrium process. However, life does not operate at equilibrium, and cells have evolved multiple strategies to keep condensates in a non-equilibrium state. In this review, we discuss how these non-equilibrium drivers counteract solidification and potentially detrimental aggregation, and at the same time enable biological condensates to perform work and control the flux of substrates and information in a spatial and temporal manner.


Assuntos
Nucléolo Celular , Organelas , Expressão Gênica , Termodinâmica
7.
Curr Opin Cell Biol ; 67: 46-55, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32890906

RESUMO

The proteostasis network adjusts protein composition and maintains protein integrity, which are essential processes for cell function and viability. Current efforts, given their intrinsic characteristics, regenerative potential and fundamental biological functions, have been directed to define proteostasis of stem cells. These insights demonstrate that embryonic stem cells and induced pluripotent stem cells exhibit an endogenous proteostasis network that not only modulates their pluripotency and differentiation but also provides a striking ability to suppress aggregation of disease-related proteins. Moreover, recent findings establish a central role of enhanced proteostasis to prevent the aging of somatic stem cells in adult organisms. Notably, proteostasis is also required for the biological purpose of adult germline stem cells, that is to be passed from one generation to the next. Beyond these links between proteostasis and stem cell function, we also discuss the implications of these findings for disease, aging, and reproduction.


Assuntos
Proteostase , Células-Tronco/metabolismo , Envelhecimento/metabolismo , Animais , Diferenciação Celular , Fertilidade , Células Germinativas/citologia , Humanos
8.
Aging Cell ; 16(5): 994-1005, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28613034

RESUMO

Protein quality control mechanisms, required for normal cellular functioning, encompass multiple functions related to protein production and maintenance. However, the existence of communication between proteostasis and metabolic networks and its underlying mechanisms remain elusive. Here, we report that enhanced chaperone activity and consequent improved proteostasis are sensed by TORC1 via the activity of Hsp82. Chaperone enrichment decreases the level of Hsp82, which deactivates TORC1 and leads to activation of Snf1/AMPK, regardless of glucose availability. This mechanism culminates in the extension of yeast replicative lifespan (RLS) that is fully reliant on both TORC1 deactivation and Snf1/AMPK activation. Specifically, we identify oxygen consumption increase as the downstream effect of Snf1 activation responsible for the entire RLS extension. Our results set a novel paradigm for the role of proteostasis in aging: modulation of the misfolded protein level can affect cellular metabolic features as well as mitochondrial activity and consequently modify lifespan. The described mechanism is expected to open new avenues for research of aging and age-related diseases.


Assuntos
Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Divisão Celular , Proteínas de Choque Térmico HSP90/genética , Redes e Vias Metabólicas/genética , Mitocôndrias/metabolismo , Consumo de Oxigênio/genética , Proteínas Serina-Treonina Quinases/genética , Proteostase , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética
9.
Front Cell Dev Biol ; 3: 30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052512

RESUMO

Protein disulphide isomerase (PDI) is a multifunctional redox chaperone of the endoplasmic reticulum (ER). Since it was first discovered 40 years ago the functions ascribed to PDI have evolved significantly and recent studies have recognized its distinct functions, with adverse as well as protective effects in disease. Furthermore, post translational modifications of PDI abrogate its normal functional roles in specific disease states. This review focusses on recent studies that have identified novel functions for PDI relevant to specific diseases.

10.
Mitochondrion ; 23: 64-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26022780

RESUMO

Functional disorders are common conditions with a substantial impact on a patients' wellbeing, and can be diagnostically elusive. There are bidirectional associations between functional disorders and mitochondrial dysfunction. In this study, provided clinical information and the exon sequence of the TRAP1 mitochondrial chaperone were retrospectively reviewed with a focus on the functional categories of chronic pain, fatigue and gastrointestinal dysmotility. Very-highly conserved TRAP1 variants were identified in 73 of 930 unrelated patients. Functional symptomatology is strongly associated with specific variants in the ATPase binding pocket. In particular, the combined presence of all three functional categories is strongly associated with p.Ile253Val (OR 7.5, P = 0.0001) and with two other interacting variants (OR 18, P = 0.0005). Considering a 1-2% combined variant prevalence and high odds ratios, these variants may be an important factor in the etiology of functional symptomatology.


Assuntos
Fadiga/genética , Proteínas de Choque Térmico HSP90/genética , Náusea/genética , Dor/genética , Substituição de Aminoácidos , Frequência do Gene , Estudos de Associação Genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Estudos Retrospectivos
11.
G3 (Bethesda) ; 3(8): 1315-24, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23733891

RESUMO

Human heat shock transcription factor 1 (HSF1) promotes the expression of stress-responsive genes and is a critical factor for the cellular protective response to proteotoxic and other stresses. In response to stress, HSF1 undergoes a transition from a repressed cytoplasmic monomer to a homotrimer, accumulates in the nucleus, binds DNA, and activates target gene transcription. Although these steps occur as sequential and highly regulated events, our understanding of the full details of the HSF1 activation pathway remains incomplete. Here we describe a genetic screen in humanized yeast that identifies constitutively trimerized HSF1 mutants. Surprisingly, constitutively trimerized HSF1 mutants do not bind to DNA in vivo in the absence of stress and only become DNA binding competent upon stress exposure, suggesting that an additional level of regulation beyond trimerization and nuclear localization may be required for HSF1 DNA binding. Furthermore, we identified a constitutively trimerized and nuclear-localized HSF1 mutant, HSF1 L189P, located in LZ3 of the HSF1 trimerization domain, which in response to proteotoxic stress is strongly compromised for DNA binding at the Hsp70 and Hsp25 promoters but readily binds to the interleukin-6 promoter, suggesting that HSF1 DNA binding is in part regulated in a locus-dependent manner, perhaps via promoter-specific differences in chromatin architecture. Furthermore, these results implicate the LZ3 region of the HSF1 trimerization domain in a function beyond its canonical role in HSF1 trimerization.


Assuntos
Proteínas de Ligação a DNA/genética , DNA/genética , Seleção Genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Cromatina/química , Cromatina/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Zíper de Leucina , Dados de Sequência Molecular , Mutagênese , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
12.
Braz. j. med. biol. res ; 42(2): 164-167, Feb. 2009. graf
Artigo em Inglês | LILACS | ID: lil-506877

RESUMO

Chaperone members of the protein disulfide isomerase family can catalyze the thiol-disulfide exchange reaction with pairs of cysteines. There are 14 protein disulfide isomerase family members, but the ability to catalyze a thiol disulfide exchange reaction has not been demonstrated for all of them. Human endoplasmic reticulum protein chaperone thio-oxidoreductase (ERp18) shows partial oxidative activity as a protein disulfide isomerase. The aim of the present study was to evaluate the participation of ERp18 in gonadotropin-releasing hormone receptor (GnRHR) expression at the plasma membrane. Cos-7 cells were cultured, plated, and transfected with 25 ng (unless indicated) wild-type human GnRHR (hGnRHR) or mutant GnRHR (Cys14Ala and Cys200Ala) and pcDNA3.1 without insert (empty vector) or ERp18 cDNA (75 ng/well), pre-loaded for 18 h with 1 µCi myo-[2-3H(N)]-inositol in 0.25 mL DMEM and treated for 2 h with buserelin. We observed a decrease in maximal inositol phosphate (IP) production in response to buserelin in the cells co-transfected with hGnRHR, and a decrease from 20 to 75 ng of ERp18 compared with cells co-transfected with hGnRHR and empty vector. The decrease in maximal IP was proportional to the amount of ERp18 DNA over the range examined. Mutants (Cys14Ala and Cys200Ala) that could not form the Cys14-Cys200 bridge essential for plasma membrane routing of the hGnRHR did not modify maximal IP production when they were co-transfected with ERp18. These results suggest that ERp18 has a reduction role on disulfide bonds in wild-type hGnRHR folding.


Assuntos
Animais , Humanos , Membrana Celular/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Receptores LHRH/metabolismo , Busserrelina/metabolismo , Busserrelina/farmacologia , Chlorocebus aethiops , Células COS , Membrana Celular/química , Fosfatos de Inositol/metabolismo , Mutação , Proteína Dissulfeto Redutase (Glutationa)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA