Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900644

RESUMO

Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it became clear that cell size is a major regulator of cell function. However, we are only beginning to understand how optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells, and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis and cell cycle progression. We detail the cell size dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size, and how for a long time, this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.

2.
J Biol Chem ; 300(4): 107169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494075

RESUMO

The unfolded protein response is a mechanism aiming at restoring endoplasmic reticulum (ER) homeostasis and is likely involved in other adaptive pathways. The unfolded protein response is transduced by three proteins acting as sensors and triggering downstream signaling pathways. Among them, inositol-requiring enzyme 1 alpha (IRE1α) (referred to as IRE1 hereafter), an endoplasmic reticulum-resident type I transmembrane protein, exerts its function through both kinase and endoribonuclease activities, resulting in both X-box binding protein 1 mRNA splicing and RNA degradation (regulated ire1 dependent decay). An increasing number of studies have reported protein-protein interactions as regulators of these signaling mechanisms, and additionally, driving other noncanonical functions. In this review, we deliver evolutive and structural insights on IRE1 and further describe how this protein interaction network (interactome) regulates IRE1 signaling abilities or mediates other cellular processes through catalytic-independent mechanisms. Moreover, we focus on newly discovered targets of IRE1 kinase activity and discuss potentially novel IRE1 functions based on the nature of the interactome, thereby identifying new fields to explore regarding this protein's biological roles.


Assuntos
Endorribonucleases , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , Evolução Molecular
3.
Plant J ; 119(1): 218-236, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565312

RESUMO

The Arabidopsis endoplasmic reticulum-localized heat shock protein HSP90.7 modulates tissue differentiation and stress responses; however, complete knockout lines have not been previously reported. In this study, we identified and analyzed a mutant allele, hsp90.7-1, which was unable to accumulate the HSP90.7 full-length protein and showed seedling lethality. Microscopic analyses revealed its essential role in male and female fertility, trichomes and root hair development, proper chloroplast function, and apical meristem maintenance and differentiation. Comparative transcriptome and proteome analyses also revealed the role of the protein in a multitude of cellular processes. Particularly, the auxin-responsive pathway was specifically downregulated in the hsp90.7-1 mutant seedlings. We measured a much-reduced auxin content in both root and shoot tissues. Through comprehensive histological and molecular analyses, we confirmed PIN1 and PIN5 accumulations were dependent on the HSP90 function, and the TAA-YUCCA primary auxin biosynthesis pathway was also downregulated in the mutant seedlings. This study therefore not only fulfilled a gap in understanding the essential role of HSP90 paralogs in eukaryotes but also provided a mechanistic insight on the ER-localized chaperone in regulating plant growth and development via modulating cellular auxin homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Retículo Endoplasmático , Proteínas de Choque Térmico HSP90 , Homeostase , Ácidos Indolacéticos , Plântula , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética
4.
Plant J ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969341

RESUMO

HSP90Cs are essential molecular chaperones localized in the plastid stroma that maintain protein homeostasis and assist the import and thylakoid transport of chloroplast proteins. While HSP90C contains all conserved domains as an HSP90 family protein, it also possesses a unique feature in its variable C-terminal extension (CTE) region. This study elucidated the specific function of this HSP90C CTE region. Our phylogenetic analyses revealed that this intrinsically disordered region contains a highly conserved DPW motif in the green lineages. With biochemical assays, we showed that the CTE is required for the chaperone to effectively interact with client proteins PsbO1 and LHCB2 to regulate ATP-independent chaperone activity and to effectuate its ATP hydrolysis. The CTE truncation mutants could support plant growth and development reminiscing the wild type under normal conditions except for a minor phenotype in cotyledon when expressed at a level comparable to wild type. However, higher HSP90C expression was observed to correlate with a stronger response to specific photosystem II inhibitor DCMU, and CTE truncations dampened the response. Additionally, when treated with lincomycin to inhibit chloroplast protein translation, CTE truncation mutants showed a delayed response to PsbO1 expression repression, suggesting its role in chloroplast retrograde signaling. Our study therefore provides insights into the mechanism of HSP90C in client protein binding and the regulation of green chloroplast maturation and function, especially under stress conditions.

5.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38406827

RESUMO

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Assuntos
Canabidiol , Neoplasias , Humanos , Cisplatino/toxicidade , Canabidiol/farmacologia , Canabidiol/metabolismo , Canabidiol/uso terapêutico , Caquexia/metabolismo , Catalase/metabolismo , Qualidade de Vida , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Atrofia Muscular/tratamento farmacológico , Estresse Oxidativo , Neoplasias/metabolismo , RNA Mensageiro/metabolismo
6.
Curr Issues Mol Biol ; 46(7): 6423-6439, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057026

RESUMO

Neurodegeneration is becoming one of the leading causes of death worldwide as the population expands and grows older. There is a growing desire to understand the mechanisms behind prion proteins as well as the prion-like proteins that make up neurodegenerative diseases (NDs), including Alzheimer's disease (AD) and Parkinson's disease (PD). Both amyloid-ß (Aß) and hyperphosphorylated tau (p-tau) proteins behave in ways similar to those of the infectious form of the prion protein, PrPSc, such as aggregating, seeding, and replicating under not yet fully understood mechanisms, thus the designation of prion-like. This review aims to highlight the shared mechanisms between prion-like proteins and prion proteins in the structural variations associated with aggregation and disease development. These mechanisms largely focus on the dysregulation of protein homeostasis, self-replication, and protein aggregation, and this knowledge could contribute to diagnoses and treatments for the given NDs.

7.
Biochem Biophys Res Commun ; 702: 149651, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38350414

RESUMO

Nascent proteins are degraded during or immediately after synthesis, a process called cotranslational protein degradation (CTPD). Although CTPD was observed decades ago, it has never been fully explored mechanistically and functionally. We show here that dihydrofolate reductase (DHFR) and ubiquitin (Ub), two stable proteins widely used in protein degradation studies, are actually subject to CTPD. Unlike canonical posttranslational protein degradation, CTPD of DHFR and Ub does not require prior ubiquitylation. Our data also suggest that protein expression level and N-terminal folding pattern may be two critical determinants for CTPD. Thus, this study reveals that CTPD plays a role in regulating the homeostasis of long-lived proteins and provides insights into the mechanism of CTPD.


Assuntos
Tetra-Hidrofolato Desidrogenase , Ubiquitina , Ubiquitina/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Ubiquitinação , Proteínas/metabolismo , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo
8.
Biochem Soc Trans ; 52(3): 1539-1548, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864432

RESUMO

Mitochondria are essential organelles of eukaryotic cells and thus mitochondrial proteome is under constant quality control and remodelling. Yme1 is a multi-functional protein and subunit of the homo-hexametric complex i-AAA proteinase. Yme1 plays vital roles in the regulation of mitochondrial protein homeostasis and mitochondrial plasticity, ranging from substrate degradation to the regulation of protein functions involved in mitochondrial protein biosynthesis, energy production, mitochondrial dynamics, and lipid biosynthesis and signalling. In this mini review, we focus on discussing the current understanding of the roles of Yme1 in mitochondrial protein import via TIM22 and TIM23 pathways, oxidative phosphorylation complex function, as well as mitochondrial lipid biosynthesis and signalling, as well as a brief discussion of the role of Yme1 in modulating mitochondrial dynamics.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Proteínas Mitocondriais , Fosforilação Oxidativa , Transporte Proteico , Proteostase , Humanos , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Animais , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Lipídeos/biossíntese , Lipídeos/química , Metabolismo dos Lipídeos , Homeostase , Transdução de Sinais , Proteases Dependentes de ATP/metabolismo
9.
Bioorg Chem ; 145: 107217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368657

RESUMO

Intrinsically disordered proteins (IDPs) are characterized by their inability to adopt well-defined tertiary structures under physiological conditions. Nonetheless, they often play pivotal roles in the progression of various diseases, including cancer, neurodegenerative disorders, and cardiovascular ailments. Owing to their inherent dynamism, conventional drug design approaches based on structural considerations encounter substantial challenges when applied to IDPs. Consequently, the pursuit of therapeutic interventions directed towards IDPs presents a complex endeavor. While there are indeed existing methodologies for targeting IDPs, they are encumbered by noteworthy constrains. Hence, there exists an imminent imperative to investigate more efficacious and universally applicable strategies for modulating IDPs. Here, we present an overview of the latest advancements in the research pertaining to IDPs, along with the indirect regulation approach involving the modulation of IDP degradation through proteasome. By comprehending these advancements in research, novel insights can be generated to facilitate the development of new drugs targeted at addressing the accumulation of IDPs in diverse pathological conditions.


Assuntos
Proteínas Intrinsicamente Desordenadas , Neoplasias , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Desenho de Fármacos , Neoplasias/metabolismo , Conformação Proteica
10.
Acta Pharmacol Sin ; 45(6): 1095-1114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38267546

RESUMO

The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.


Assuntos
Estresse Fisiológico , Humanos , Animais , Estresse Fisiológico/fisiologia , Organelas/metabolismo , Transdução de Sinais/fisiologia , Mitocôndrias/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-38978505

RESUMO

Carfilzomib (CFZ) is the second-generation proteasome inhibitor that is approved by Food and Drug Administration (FDA) of USA for the treatment of relapsed and refractory multiple myeloma. Although the preclinical and clinical efficacy of CFZ is obvious, the mechanism by which CFZ leads to cell death has not been fully elucidated. Since CFZ primarily functions as a proteasome inhibitor, profiling CFZ-induced changes in protein turnover at the systematic level is sufficient and necessary. In this study, we characterize the effects of CFZ on the stability of 15,000 human proteins using Protein Turnover Assay (ProTA). CFZ affects fundamental cellular glycolysis, nitric oxide production and proteasome subunit homeostasis in multiple myeloma cells. In addition, LY294002 or KU-0063794 has synergistic effects with CFZ in multiple myeloma treatment. A profound understanding of how cells respond to chemotherapeutic agents provides insights into the basic mechanism of drug function and the rationale for CFZ combination therapy.

12.
Int J Biol Macromol ; 263(Pt 1): 130309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382779

RESUMO

Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.


Assuntos
Proteostase , Ubiquitina , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/química , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitina/química , Domínio Catalítico , Ubiquitina Tiolesterase/química
13.
Open Biol ; 14(1): 230386, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38262604

RESUMO

The protein homeostasis network keeps proteins in their correct shapes and avoids unwanted aggregation. In turn, the accumulation of aberrantly misfolded proteins has been directly associated with the onset of ageing-associated neurodegenerative diseases such as Alzheimer's and Parkinson's. However, a detailed and rational understanding of how protein homeostasis is achieved in health, and how it can be targeted for therapeutic intervention in diseases remains missing. Here, large-scale single-cell expression data from the Allen Brain Map are analysed to investigate the transcription regulation of the core protein homeostasis network across the human brain. Remarkably, distinct expression profiles suggest specialized protein homeostasis networks with systematic adaptations in excitatory neurons, inhibitory neurons and non-neuronal cells. Moreover, several chaperones and Ubiquitin ligases are found transcriptionally coregulated with genes important for synapse formation and maintenance, thus linking protein homeostasis to the regulation of neuronal function. Finally, evolutionary analyses highlight the conservation of an elevated interaction density in the chaperone network, suggesting that one of the most exciting aspects of chaperone action may yet be discovered in their collective action at the systems level. More generally, our work highlights the power of computational analyses for breaking down complexity and gaining complementary insights into fundamental biological problems.


Assuntos
Dobramento de Proteína , Proteostase , Humanos , Envelhecimento , Evolução Biológica , Neurônios
14.
Front Cell Dev Biol ; 12: 1423208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050895

RESUMO

The existing literature points towards the presence of robust mitochondrial mechanisms aimed at mitigating protein dyshomeostasis within the organelle. However, the precise molecular composition of these mechanisms remains unclear. Our data show that inorganic polyphosphate (polyP), a polymer well-conserved throughout evolution, is a component of these mechanisms. In mammals, mitochondria exhibit a significant abundance of polyP, and both our research and that of others have already highlighted its potent regulatory effect on bioenergetics. Given the intimate connection between energy metabolism and protein homeostasis, the involvement of polyP in proteostasis has also been demonstrated in several organisms. For example, polyP is a bacterial primordial chaperone, and its role in amyloidogenesis has already been established. Here, using mammalian models, our study reveals that the depletion of mitochondrial polyP leads to increased protein aggregation within the organelle, following stress exposure. Furthermore, mitochondrial polyP is able to bind to proteins, and these proteins differ under control and stress conditions. The depletion of mitochondrial polyP significantly affects the proteome under both control and stress conditions, while also exerting regulatory control over gene expression. Our findings suggest that mitochondrial polyP is a previously unrecognized, and potent component of mitochondrial proteostasis.

15.
Dev Cell ; 59(14): 1892-1911.e13, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38810654

RESUMO

Protein aggregation is a hallmark of age-related neurodegeneration. Yet, aggregation during normal aging and in tissues other than the brain is poorly understood. Here, we leverage the African turquoise killifish to systematically profile protein aggregates in seven tissues of an aging vertebrate. Age-dependent aggregation is strikingly tissue specific and not simply driven by protein expression differences. Experimental interrogation in killifish and yeast, combined with machine learning, indicates that this specificity is linked to protein-autonomous biophysical features and tissue-selective alterations in protein quality control. Co-aggregation of protein quality control machinery during aging may further reduce proteostasis capacity, exacerbating aggregate burden. A segmental progeria model with accelerated aging in specific tissues exhibits selectively increased aggregation in these same tissues. Intriguingly, many age-related protein aggregates arise in wild-type proteins that, when mutated, drive human diseases. Our data chart a comprehensive landscape of protein aggregation during vertebrate aging and identify strong, tissue-specific associations with dysfunction and disease.


Assuntos
Envelhecimento , Agregados Proteicos , Animais , Envelhecimento/metabolismo , Humanos , Proteostase , Especificidade de Órgãos , Vertebrados/metabolismo , Agregação Patológica de Proteínas/metabolismo , Progéria/metabolismo , Progéria/genética , Progéria/patologia
16.
FEBS Lett ; 598(12): 1465-1477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38529663

RESUMO

J-domain proteins are critical Hsp70 co-chaperones. A and B types have a poorly understood glycine-rich region (Grich) adjacent to their N-terminal J-domain (Jdom). We analyzed the ability of Jdom/Grich segments of yeast Class B Sis1 and a suppressor variant of Class A, Ydj1, to rescue the inviability of sis1-∆. In each, we identified a cluster of Grich residues required for rescue. Both contain conserved hydrophobic and acidic residues and are predicted to form helices. While, as expected, the Sis1 segment docks on its J-domain, that of Ydj1 does not. However, data suggest both interact with Hsp70. We speculate that the Grich-Hsp70 interaction of Classes A and B J-domain proteins can fine tune the activity of Hsp70, thus being particularly important for the function of Class B.


Assuntos
Glicina , Proteínas de Choque Térmico HSP70 , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Glicina/metabolismo , Glicina/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Sequência de Aminoácidos , Ligação Proteica , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Modelos Moleculares
17.
Antioxid Redox Signal ; 41(4-6): 296-321, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38115641

RESUMO

Significance: Stringent regulation of protein homeostasis pathways, under both physiological and pathological conditions, is necessary for the maintenance of proteome fidelity and optimal cell functioning. However, when challenged by endogenous or exogenous stressors, these proteostasis pathways can become dysregulated with detrimental consequences for protein fate, cell survival, and overall organism health. Most notably, there are numerous somatic pathologies associated with a loss of proteostatic regulation, including neurodegenerative disorders, type 2 diabetes, and some cancers. Recent Advances: Lipid oxidation-derived reactive carbonyl species (RCS), such as 4-hydroxynonenal (4HNE) and malondialdehyde, are relatively underappreciated purveyors of proteostatic dysregulation, which elicit their effects via the nonenzymatic post-translational modification of proteins. Emerging evidence suggests that a subset of germline proteins can serve as substrates for 4HNE modification. Among these, prevalent targets include succinate dehydrogenase, heat shock protein A2 and A-kinase anchor protein 4, all of which are intrinsically associated with fertility. Critical Issues: Despite growing knowledge in this field, the RCS adductomes of spermatozoa and oocytes are yet to be comprehensively investigated. Furthermore, the manner by which RCS-mediated adduction impacts protein fate and drives cellular responses, such as protein aggregation, requires further examination in the germline. Given that RCS-protein adduction has been attributed a role in infertility, there has been sparked research investment into strategies to prevent lipid peroxidation in germ cells. Future Directions: An increased depth of knowledge regarding the mechanisms and substrates of RCS-mediated protein modification in reproductive cells may reveal important targets for the development of novel therapies to improve fertility and pregnancy outcomes for future generations.


Assuntos
Proteostase , Humanos , Animais , Aldeídos/metabolismo , Processamento de Proteína Pós-Traducional , Células Germinativas/metabolismo , Estresse Oxidativo , Masculino , Oxirredução
18.
Geroscience ; 46(5): 5015-5036, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38900346

RESUMO

Little is known about the possibility of reversing age-related biological changes when they have already occurred. To explore this, we have characterized the effects of reducing insulin/IGF-1 signaling (IIS) during old age. Reduction of IIS throughout life slows age-related decline in diverse species, most strikingly in the nematode Caenorhabditis elegans. Here we show that even at advanced ages, auxin-induced degradation of DAF-2 in single tissues, including neurons and the intestine, is still able to markedly increase C. elegans lifespan. We describe how reversibility varies among senescent changes. While senescent pathologies that develop in mid-life were not reversed, there was a rejuvenation of the proteostasis network, manifesting as a restoration of the capacity to eliminate otherwise intractable protein aggregates that accumulate with age. Moreover, resistance to several stressors was restored. These results support several new conclusions. (1) Loss of resilience is not solely a consequence of pathologies that develop in earlier life. (2) Restoration of proteostasis and resilience by inhibiting IIS is a plausible cause of the increase in lifespan. And (3), most interestingly, some aspects of the age-related transition from resilience to frailty can be reversed to a certain extent. This raises the possibility that the effect of IIS and related pathways on resilience and frailty during aging in higher animals might possess some degree of reversibility.


Assuntos
Envelhecimento , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Longevidade , Proteostase , Receptor de Insulina , Transdução de Sinais , Animais , Longevidade/fisiologia , Proteostase/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Receptor de Insulina/metabolismo , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo
19.
Toxicology ; 502: 153731, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38253231

RESUMO

Lanthanum (La) and cerium (Ce), rare earth elements with physical properties similar to calcium (Ca), are generally considered non-toxic when used appropriately. However, their ions possess anti-tumor capabilities. This investigation explores the potential applications and mechanisms of LaCl3 or CeCl3 treatment in triple-negative breast cancer (TNBC) cell lines. TNBC, characterized by the absence of estrogen receptor (ERα), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) expression, is prone to early metastasis and resistant to hormone therapy. Our results demonstrate that La/Ce treatment reduces cell growth, and when combined with cisplatin, it synergistically inhibits cell growth and the PI3K/AKT pathway. La and Ce induce oxidative stress by disrupting mitochondrial function, leading to protein oxidation. Additionally, they interfere with protein homeostasis and induce nucleolar stress. Furthermore, disturbance in F-actin web formation impairs cell migration. This study delves into the mechanism by which calcium-like elements La and Ce inhibit breast cancer cell growth, shedding light on their interference in mitochondrial function, protein homeostasis, and cytoskeleton assembly.


Assuntos
Elementos da Série dos Lantanídeos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cálcio , Cisplatino , Lantânio/toxicidade , Linhagem Celular Tumoral
20.
Mol Neurobiol ; 61(8): 5295-5307, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38180617

RESUMO

Preterm white matter injury (WMI) is a demyelinating disease with high incidence and mortality in premature infants. Oligodendrocyte cells (OLs) are a specialized glial cell that produces myelin proteins and adheres to the axons providing energy and metabolic support which susceptible to endoplasmic reticulum protein quality control. Disruption of cellular protein homeostasis led to OLs dysfunction and cell death, immediately, the unfolded protein response (UPR) activated to attempt to restore the protein homeostasis via IRE1/XBP1s, PERK/eIF2α and ATF6 pathway that reduced protein translation, strengthen protein-folding capacity, and degraded unfolding/misfolded protein. Moreover, recent works have revealed the conspicuousness function of ER signaling pathways in regulating influenced factors such as calcium homeostasis, mitochondrial reactive oxygen generation, and autophagy activation to regulate protein hemostasis and improve the myelination function of OLs. Each of the regulation modes and their corresponding molecular mechanisms provides unique opportunities and distinct perspectives to obtain a deep understanding of different actions of ER stress in maintaining OLs' health and function. Therefore, our review focuses on summarizing the current understanding of ER stress on OLs' protein homeostasis micro-environment in myelination during white matter development, as well as the pathophysiology of WMI, and discussing the further potential experimental therapeutics targeting these factors that restore the function of the UPR in OLs myelination function.


Assuntos
Estresse do Retículo Endoplasmático , Recém-Nascido Prematuro , Oligodendroglia , Substância Branca , Humanos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Estresse do Retículo Endoplasmático/fisiologia , Substância Branca/metabolismo , Substância Branca/patologia , Animais , Recém-Nascido , Proteostase/fisiologia , Bainha de Mielina/metabolismo , Homeostase/fisiologia , Resposta a Proteínas não Dobradas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA