Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.105
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 87: 783-807, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28841344

RESUMO

Scap is a polytopic membrane protein that functions as a molecular machine to control the cholesterol content of membranes in mammalian cells. In the 21 years since our laboratory discovered Scap, we have learned how it binds sterol regulatory element-binding proteins (SREBPs) and transports them from the endoplasmic reticulum (ER) to the Golgi for proteolytic processing. Proteolysis releases the SREBP transcription factor domains, which enter the nucleus to promote cholesterol synthesis and uptake. When cholesterol in ER membranes exceeds a threshold, the sterol binds to Scap, triggering several conformational changes that prevent the Scap-SREBP complex from leaving the ER. As a result, SREBPs are no longer processed, cholesterol synthesis and uptake are repressed, and cholesterol homeostasis is restored. This review focuses on the four domains of Scap that undergo concerted conformational changes in response to cholesterol binding. The data provide a molecular mechanism for the control of lipids in cell membranes.


Assuntos
Colesterol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Animais , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Transporte Proteico , Proteólise , Receptores de LDL/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(11): e2221308120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897975

RESUMO

Aerobic reactions are essential to sustain plant growth and development. Impaired oxygen availability due to excessive water availability, e.g., during waterlogging or flooding, reduces plant productivity and survival. Consequently, plants monitor oxygen availability to adjust growth and metabolism accordingly. Despite the identification of central components in hypoxia adaptation in recent years, molecular pathways involved in the very early activation of low-oxygen responses are insufficiently understood. Here, we characterized three endoplasmic reticulum (ER)-anchored Arabidopsis ANAC transcription factors, namely ANAC013, ANAC016, and ANAC017, which bind to the promoters of a subset of hypoxia core genes (HCGs) and activate their expression. However, only ANAC013 translocates to the nucleus at the onset of hypoxia, i.e., after 1.5 h of stress. Upon hypoxia, nuclear ANAC013 associates with the promoters of multiple HCGs. Mechanistically, we identified residues in the transmembrane domain of ANAC013 to be essential for transcription factor release from the ER, and provide evidence that RHOMBOID-LIKE 2 (RBL2) protease mediates ANAC013 release under hypoxia. Release of ANAC013 by RBL2 also occurs upon mitochondrial dysfunction. Consistently, like ANAC013 knockdown lines, rbl knockout mutants exhibit impaired low-oxygen tolerance. Taken together, we uncovered an ER-localized ANAC013-RBL2 module, which is active during the initial phase of hypoxia to enable fast transcriptional reprogramming.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Serina Endopeptidases , Fatores de Transcrição , Humanos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Fibrinogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Hipóxia/metabolismo , Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Serina Endopeptidases/metabolismo
3.
J Biol Chem ; 300(6): 107347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718867

RESUMO

A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.


Assuntos
Metástase Neoplásica , Neoplasias , Peptídeo Hidrolases , Proteólise , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/enzimologia , Peptídeo Hidrolases/metabolismo , Animais , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Progressão da Doença
4.
J Virol ; 98(2): e0159423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289101

RESUMO

The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein precursor (gp160) trimerizes, is modified by high-mannose glycans in the endoplasmic reticulum, and is transported via Golgi and non-Golgi secretory pathways to the infected cell surface. In the Golgi, gp160 is partially modified by complex carbohydrates and proteolytically cleaved to produce the mature functional Env trimer, which is preferentially incorporated into virions. Broadly neutralizing antibodies (bNAbs) generally recognize the cleaved Env trimer, whereas poorly neutralizing antibodies (pNAbs) bind the conformationally flexible gp160. We found that expression of bNAbs, pNAbs, or soluble/membrane forms of the receptor, CD4, in cells producing HIV-1 all decreased viral infectivity. Four patterns of co-expressed ligand:Env were observed: (i) ligands (CD4, soluble CD4-Ig, and some pNAbs) that specifically recognize the CD4-bound Env conformation resulted in uncleaved Envs lacking complex glycans that were not incorporated into virions; (ii) other pNAbs produced Envs with some complex carbohydrates and severe defects in cleavage, which were relieved by brefeldin A treatment; (iii) bNAbs that recognize gp160 as well as mature Envs resulted in Envs with some complex carbohydrates and moderate decreases in virion Env cleavage; and (iv) bNAbs that preferentially recognize mature Envs produced cleaved Envs with complex glycans in cells and on virions. The low infectivity observed upon co-expression of pNAbs or CD4 could be explained by disruption of Env trafficking, reducing the level of Env and/or increasing the fraction of uncleaved Env on virions. In addition to bNAb effects on virion Env cleavage, the secreted bNAbs neutralized the co-expressed viruses.IMPORTANCEThe Env trimers on the HIV-1 mediate virus entry into host cells. Env is synthesized in infected cells, modified by complex sugars, and cleaved to form a mature, functional Env, which is incorporated into virus particles. Env elicits antibodies in infected individuals, some of which can neutralize the virus. We found that antibodies co-expressed in the virus-producing cell can disrupt Env transit to the proper compartment for cleavage and sugar modification and, in some cases, block incorporation into viruses. These studies provide insights into the processes by which Env becomes functional in the virus-producing cell and may assist attempts to interfere with these events to inhibit HIV-1 infection.


Assuntos
Anticorpos Amplamente Neutralizantes , Infecções por HIV , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Humanos , Anticorpos Neutralizantes , Carboidratos , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Polissacarídeos/metabolismo
5.
Mol Syst Biol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918600

RESUMO

The variability of proteins at the sequence level creates an enormous potential for proteome complexity. Exploring the depths and limits of this complexity is an ongoing goal in biology. Here, we systematically survey human and plant high-throughput bottom-up native proteomics data for protein truncation variants, where substantial regions of the full-length protein are missing from an observed protein product. In humans, Arabidopsis, and the green alga Chlamydomonas, approximately one percent of observed proteins show a short form, which we can assign by comparison to RNA isoforms as either likely deriving from transcript-directed processes or limited proteolysis. While some detected protein fragments align with known splice forms and protein cleavage events, multiple examples are previously undescribed, such as our observation of fibrocystin proteolysis and nuclear translocation in a green alga. We find that truncations occur almost entirely between structured protein domains, even when short forms are derived from transcript variants. Intriguingly, multiple endogenous protein truncations of phase-separating translational proteins resemble cleaved proteoforms produced by enteroviruses during infection. Some truncated proteins are also observed in both humans and plants, suggesting that they date to the last eukaryotic common ancestor. Finally, we describe novel proteoform-specific protein complexes, where the loss of a domain may accompany complex formation.

6.
Mol Syst Biol ; 20(4): 403-427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287148

RESUMO

For years, proteasomal degradation was predominantly attributed to the ubiquitin-26S proteasome pathway. However, it is now evident that the core 20S proteasome can independently target proteins for degradation. With approximately half of the cellular proteasomes comprising free 20S complexes, this degradation mechanism is not rare. Identifying 20S-specific substrates is challenging due to the dual-targeting of some proteins to either 20S or 26S proteasomes and the non-specificity of proteasome inhibitors. Consequently, knowledge of 20S proteasome substrates relies on limited hypothesis-driven studies. To comprehensively explore 20S proteasome substrates, we employed advanced mass spectrometry, along with biochemical and cellular analyses. This systematic approach revealed hundreds of 20S proteasome substrates, including proteins undergoing specific N- or C-terminal cleavage, possibly for regulation. Notably, these substrates were enriched in RNA- and DNA-binding proteins with intrinsically disordered regions, often found in the nucleus and stress granules. Under cellular stress, we observed reduced proteolytic activity in oxidized proteasomes, with oxidized protein substrates exhibiting higher structural disorder compared to unmodified proteins. Overall, our study illuminates the nature of 20S substrates, offering crucial insights into 20S proteasome biology.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Proteólise
7.
Methods ; 229: 133-146, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944134

RESUMO

Asparagine peptide lyase (APL) is among the seven groups of proteases, also known as proteolytic enzymes, which are classified according to their catalytic residue. APLs are synthesized as precursors or propeptides that undergo self-cleavage through autoproteolytic reaction. At present, APLs are grouped into 10 families belonging to six different clans of proteases. Recognizing their critical roles in many biological processes including virus maturation, and virulence, accurate identification and characterization of APLs is indispensable. Experimental identification and characterization of APLs is laborious and time-consuming. Here, we developed APLpred, a novel support vector machine (SVM) based predictor that can predict APLs from the primary sequences. APLpred was developed using Boruta-based optimal features derived from seven encodings and subsequently trained using five machine learning algorithms. After evaluating each model on an independent dataset, we selected APLpred (an SVM-based model) due to its consistent performance during cross-validation and independent evaluation. We anticipate APLpred will be an effective tool for identifying APLs. This could aid in designing inhibitors against these enzymes and exploring their functions. The APLpred web server is freely available at https://procarb.org/APLpred/.

8.
Mol Cell Proteomics ; 22(5): 100543, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030595

RESUMO

Excitotoxicity, a neuronal death process in neurological disorders such as stroke, is initiated by the overstimulation of ionotropic glutamate receptors. Although dysregulation of proteolytic signaling networks is critical for excitotoxicity, the identity of affected proteins and mechanisms by which they induce neuronal cell death remain unclear. To address this, we used quantitative N-terminomics to identify proteins modified by proteolysis in neurons undergoing excitotoxic cell death. We found that most proteolytically processed proteins in excitotoxic neurons are likely substrates of calpains, including key synaptic regulatory proteins such as CRMP2, doublecortin-like kinase I, Src tyrosine kinase and calmodulin-dependent protein kinase IIß (CaMKIIß). Critically, calpain-catalyzed proteolytic processing of these proteins generates stable truncated fragments with altered activities that potentially contribute to neuronal death by perturbing synaptic organization and function. Blocking calpain-mediated proteolysis of one of these proteins, Src, protected against neuronal loss in a rat model of neurotoxicity. Extrapolation of our N-terminomic results led to the discovery that CaMKIIα, an isoform of CaMKIIß, undergoes differential processing in mouse brains under physiological conditions and during ischemic stroke. In summary, by identifying the neuronal proteins undergoing proteolysis during excitotoxicity, our findings offer new insights into excitotoxic neuronal death mechanisms and reveal potential neuroprotective targets for neurological disorders.


Assuntos
Morte Celular , Neurônios , Sinapses , Animais , Masculino , Camundongos , Ratos , Calpaína/metabolismo , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Neuroproteção , Proteoma/análise , Ratos Wistar , Acidente Vascular Cerebral/patologia , Sinapses/patologia , Sinapses/fisiologia
9.
Proc Natl Acad Sci U S A ; 119(16): e2201195119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412898

RESUMO

Most peptide hormones and growth factors are matured from larger inactive precursor proteins by proteolytic processing and further posttranslational modification. Whether or how posttranslational modifications contribute to peptide bioactivity is still largely unknown. We address this question here for TWS1 (Twisted Seed 1), a peptide regulator of embryonic cuticle formation in Arabidopsis thaliana. Using synthetic peptides encompassing the N- and C-terminal processing sites and the recombinant TWS1 precursor as substrates, we show that the precursor is cleaved by the subtilase SBT1.8 at both the N and the C termini of TWS1. Recognition and correct processing at the N-terminal site depended on sulfation of an adjacent tyrosine residue. Arginine 302 of SBT1.8 was found to be required for sulfotyrosine binding and for accurate processing of the TWS1 precursor. The data reveal a critical role for posttranslational modification, here tyrosine sulfation of a plant peptide hormone precursor, in mediating processing specificity and peptide maturation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hormônios Peptídicos , Processamento de Proteína Pós-Traducional , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Tirosina/metabolismo
10.
Trends Biochem Sci ; 45(7): 604-618, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386890

RESUMO

Proteases play a pivotal role in several biological processes, from digestion, cell proliferation, and differentiation to fertility. Deregulation of protease metabolism can result in several pathological conditions (i.e., cancer, neurodegenerative disorders, and others). Therefore, monitoring proteolytic activity in real time could have a fundamental role in the early diagnosis of these diseases. Herein, the main approaches used to develop biosensors for monitoring proteolytic activity are reviewed. A comparison of the advantages and disadvantages of each approach is provided along with a discussion of their importance and promising opportunities for the early diagnosis of severe diseases. This new era of biosensors can be characterized by the ability to control and monitor biological processes, ultimately improving the potential of personalized medicine.


Assuntos
Técnicas Biossensoriais , Humanos , Peptídeo Hidrolases/metabolismo , Medicina de Precisão , Proteólise
11.
J Biol Chem ; 299(3): 102986, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754281

RESUMO

Dengue virus (DENV) is one of the most prevalent mosquito-transmitted human viruses that causes significant morbidity and mortality worldwide. To persist in the cell and consequently cause disease, DENV is evolved with mechanisms to suppress the induction of type I interferons by antagonizing cGAS-STING signaling. Using recombinant proteins and in vitro cleavage assays, we have shown that the DENV protease NS2B3 is capable of cleaving cGAS in the N-terminal region without disrupting the C-terminal catalytic center. This generates two major cleavage products: cleavage product N-terminal (CP-N) and cleavage product C-terminal (CP-C). We observed reduction in DNA-binding affinity of CP-C as compared to full-length cGAS. Reduction in DNA-binding affinity is also correlated with the decrease in enzymatic activity of CP-C. CP-N, on the other hand, has almost comparable DNA-binding ability as that of the full-length cGAS. In fact, CP-N competitively inhibits cyclic GMP-AMP production by both full-length cGAS and CP-C. We hypothesize that high DNA-binding affinity of CP-N enables it to sequester the DNA from CP-C and noncleaved full-length cGAS and thus reduces the rate of enzyme activation and cyclic GMP-AMP synthesis. Furthermore, we found that NS2B3 physically interacts with full-length cGAS and CP-C, laying the basis for their shuttling to and eventual degradation in the autophagosome. Overall, our study highlights a multifaceted and effective strategy by which an RNA virus antagonizes cGAS-STING signaling which may be useful for the design of antivirals targeting viral proteases.


Assuntos
Vírus da Dengue , Nucleotidiltransferases , Peptídeo Hidrolases , Humanos , Vírus da Dengue/enzimologia , Imunidade Inata , Nucleotidiltransferases/metabolismo , Peptídeo Hidrolases/metabolismo
12.
J Biol Chem ; 299(5): 104697, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37044215

RESUMO

The processing of the Coronavirus polyproteins pp1a and pp1ab by the main protease Mpro to produce mature proteins is a crucial event in virus replication and a promising target for antiviral drug development. Mpro cleaves polyproteins in a defined order, but how Mpro and/or the polyproteins determine the order of cleavage remains enigmatic due to a lack of structural information about polyprotein-bound Mpro. Here, we present the cryo-EM structures of SARS-CoV-2 Mpro in an apo form and in complex with the nsp7-10 region of the pp1a polyprotein. The complex structure shows that Mpro interacts with only the recognition site residues between nsp9 and nsp10, without any association with the rest of the polyprotein. Comparison between the apo form and polyprotein-bound structures of Mpro highlights the flexible nature of the active site region of Mpro, which allows it to accommodate ten recognition sites found in the polyprotein. These observations suggest that the role of Mpro in selecting a preferred cleavage site is limited and underscores the roles of the structure, conformation, and/or dynamics of the polyproteins in determining the sequence of polyprotein cleavage by Mpro.


Assuntos
Proteases 3C de Coronavírus , Poliproteínas , Proteólise , SARS-CoV-2 , Humanos , Poliproteínas/metabolismo , SARS-CoV-2/metabolismo , Proteases 3C de Coronavírus/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-38867672

RESUMO

Ubiquitination influences the expression of the epithelial Na+ channel (ENaC). We assessed the mechanisms of selective ubiquitination of the mature, cleaved form of γENaC in both native rodent kidneys and in Fisher Rat Thyroid (FRT) cells expressing the channel heterologously. In both models, singly cleaved and fully cleaved γENaC were both strongly ubiquitinated, implying that the second cleavage releasing an inhibitory peptide was not essential for the process. To see if location of the protein in or near the apical membrane rather than cleavage per se influences ubiquitination we studied mutants of γENaC in which cleavage sites are abolished. These subunits were ubiquitinated only when co-expressed with α and ßENaC, facilitating trafficking through the Golgi apparatus. To test whether reaching the apical surface is necessary we performed in situ surface biotinylation and measured ENaC ubiquitination in the apical membrane of rat kidney. Ubiquitination of cleaved γENaC was similar in whole-kidney and surface fractions, implying that both apical and subapical channels could be modified. In FRT cells, inhibiting clathrin-mediated endocytosis with Dyngo-4a increased both total the ubiquitinated γENaC at the cell surface. Finally, we tested the idea that increased intracellular Na+ could stimulate ubiquitination. Administration of amiloride to block Na+ entry through the channels did not affect ubiquitination of γENaC in either FRT cells or rat kidney. However, presumed large increases in cellular Na+ produced by monensin in FRT cells or acute Na+ repletion in rats increased ubiquitination and decreased overall ENaC expression.

14.
J Neurochem ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814273

RESUMO

The reliability of plasma biomarkers of Alzheimer's disease (AD) can be compromised by protease-induced degradation. This can limit the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). In this study, we conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 h. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0 h or 24 h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA and P100 tubes, followed by storage at RT for 0 h or 24 h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improves the stability of Aß42 and Aß40 across all approaches. However, the Aß42/Aß40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aß42 and Aß40, and the Aß42/40 ratio for the IP-MS assay. These findings have crucial implications for preanalytical procedures, particularly in resource-limited settings.

15.
Biochem Biophys Res Commun ; 706: 149730, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461648

RESUMO

Peptides linking well-folded and non-interacting domains in fusion proteins can undergo proteolytic degradation. This leads to physical separation of the domains that were originally sought to be joined. In order to identify characteristics that determine linker degradation propensity, we selected a pair of thermostable, proteolytically-resistant domains, and joined them using five different linkers. We then assessed linker degradation propensities through size-exclusion chromatography, and denaturing and non-denaturing electrophoresis. The domains used were Coh2, an all-beta cohesin from C. thermocellum CipA, and BSX, a beta/alpha barrel xylanase from Bacillus sp. NG-27, while the linkers used were Rigid (3 repeats of N-EAAAK-C), Flexible (two repeats of N-SGGGG-C), Nat-full (42 residues of a Coh2-adjacent linker from CipA), Nat-half (a 21 residues-long derivative of Nat-full) and Nat-quarter (a 9 residues-long derivative of Nat-full). Both with proteolysis effected by proteases present in the environment, and with an exogenously-added protease (Subtilisin A), we found that Flexible underwent little or no degradation, whereas linkers of comparable length like Nat-quarter or Rigid underwent extensive degradation, as did longer linkers like Nat-Half and Nat-Full. Our analyses disfavor the likelihood of the sequence of Flexible being naturally resistant to proteolysis, and instead favor the explanation that the flexibility of Flexible facilitates movements of Coh2 relative to BSX which then serve to sterically prevent the approach of proteases. Thus, the construct incorporating Flexible appears to behave like a 'nunchuck' in which rods/spheres flanking a chain collide with approaching swords that are capable of severing the chain, to prevent severance.


Assuntos
Peptídeo Hidrolases , Peptídeos , Propionatos , Proteólise , Peptídeos/química , Indóis , Endopeptidases
16.
Acta Neuropathol ; 148(1): 2, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980441

RESUMO

Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Doenças Neurodegenerativas , Humanos , Proteína ADAM10/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Proteínas Priônicas/metabolismo , Proteínas de Membrana/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Anticorpos
17.
Microb Pathog ; 188: 106560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272327

RESUMO

Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease caused by the destruction of the intestinal mucosal epithelium that affects a growing number of people worldwide. Although the etiology of IBD is complex and still elucidated, the role of dysbiosis and dysregulated proteolysis is well recognized. Various studies observed altered composition and diversity of gut microbiota, as well as increased proteolytic activity (PA) in serum, plasma, colonic mucosa, and fecal supernatant of IBD compared to healthy individuals. The imbalance of intestinal microecology and intestinal protein hydrolysis were gradually considered to be closely related to IBD. Notably, the pivotal role of intestinal microbiota in maintaining proteolytic balance received increasing attention. In summary, we have speculated a mesmerizing story, regarding the hidden role of PA and microbiota-derived PA hidden in IBD. Most importantly, we provided the diagnosis and therapeutic targets for IBD as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Proteólise , Doenças Inflamatórias Intestinais/terapia , Intestinos , Mucosa Intestinal , Disbiose
18.
Crit Rev Food Sci Nutr ; : 1-11, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950600

RESUMO

The human diet requires a more plant-based approach due to the exhaustive effects animal-based foods have on the environment. However, plant-based proteins generally miss a few or have a lower variety in essential amino acids and are more difficult to digest. Subsequently they might be prone to fermentation by the microbiome in the proximal colon. Proteolytic fermentation can induce microbial-metabolites with beneficial and negative health effects. We review current insight into how balances in saccharolytic and proteolytic fermentation can be maintained when the diet consists predominantly of plant-based proteins. Some proteolytic fermentation metabolites may negatively impact balances in gut microbiota composition in the large intestine and influence immunity. However, proteolytic fermentation can potentially be prevented in the proximal colon toward more saccharolytic fermentation through the addition of non-digestible carbohydrates in the diet. Knowledge on this combination of plant-based proteins and non-digestible carbohydrates on colonic- and general health is limited. Current data suggest that transitioning toward a more plant-based protein diet should be accompanied with a consumption of increased quantities and more complex structures of carbohydrates or by application of technological strategies to enhances digestibility. This can reduce or prevent proteolytic fermentation which might consequently improve human health.

19.
Bioorg Med Chem ; 106: 117735, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714021

RESUMO

Numerous natural antimicrobial peptides (AMPs) exhibit a cationic amphipathic helical conformation, wherein cationic amino acids, such as lysine and arginine, play pivotal roles in antimicrobial activity by aiding initial attraction to negatively charged bacterial membranes. Expanding on our previous work, which introduced a de novo design of amphipathic helices within cationic heptapeptides using an 'all-hydrocarbon peptide stapling' approach, we investigated the impact of lysine-homologue substitution on helix formation, antimicrobial activity, hemolytic activity, and proteolytic stability of these novel AMPs. Our results demonstrate that substituting lysine with ornithine enhances both the antimicrobial activity and proteolytic stability of the stapled heptapeptide AMP series, while maintaining low hemolytic activity. This finding underscores lysine-homologue substitution as a valuable strategy for optimizing the therapeutic potential of diverse cationic AMPs.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Hemólise , Lisina , Testes de Sensibilidade Microbiana , Lisina/química , Lisina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Hemólise/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Relação Estrutura-Atividade , Proteólise/efeitos dos fármacos , Humanos , Estrutura Molecular
20.
Bioorg Chem ; 147: 107386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643565

RESUMO

Neurodegenerative diseases (NDD) are characterized by the gradual deterioration of neuronal function and integrity, resulting in an overall decline in brain function. The existing therapeutic options for NDD, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, fall short of meeting the clinical demand. A prominent pathological hallmark observed in numerous neurodegenerative disorders is the aggregation and misfolding of proteins both within and outside neurons. These abnormal proteins play a pivotal role in the pathogenesis of neurodegenerative diseases. Targeted degradation of irregular proteins offers a promising avenue for NDD treatment. Proteolysis-targeting chimeras (PROTACs) function via the ubiquitin-proteasome system and have emerged as a novel and efficacious approach in drug discovery. PROTACs can catalytically degrade "undruggable" proteins even at exceptionally low concentrations, allowing for precise quantitative control of aberrant protein levels. In this review, we present a compilation of reported PROTAC structures and their corresponding biological activities aimed at addressing NDD. Spanning from 2016 to present, this review provides an up-to-date overview of PROTAC-based therapeutic interventions. Currently, most protein degraders intended for NDD treatment remain in the preclinical research phase. Overcoming several challenges is imperative, including enhancing oral bioavailability and permeability across the blood-brain barrier, before these compounds can progress to clinical research or eventually reach the market. However, armed with an enhanced comprehension of the underlying pathological mechanisms and the emergence of innovative scaffolds for protein degraders, along with further structural optimization, we are confident that PROTAC possesses the potential to make substantial breakthroughs in the field of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Proteólise , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Proteólise/efeitos dos fármacos , Animais , Descoberta de Drogas , Estrutura Molecular , Quimera de Direcionamento de Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA