Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Mol Cell ; 81(21): 4527-4539.e8, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34407442

RESUMO

The kinase domain transfers phosphate from ATP to substrates. However, the Legionella effector SidJ adopts a kinase fold, yet catalyzes calmodulin (CaM)-dependent glutamylation to inactivate the SidE ubiquitin ligases. The structural and mechanistic basis in which the kinase domain catalyzes protein glutamylation is unknown. Here we present cryo-EM reconstructions of SidJ:CaM:SidE reaction intermediate complexes. We show that the kinase-like active site of SidJ adenylates an active-site Glu in SidE, resulting in the formation of a stable reaction intermediate complex. An insertion in the catalytic loop of the kinase domain positions the donor Glu near the acyl-adenylate for peptide bond formation. Our structural analysis led us to discover that the SidJ paralog SdjA is a glutamylase that differentially regulates the SidE ligases during Legionella infection. Our results uncover the structural and mechanistic basis in which the kinase fold catalyzes non-ribosomal amino acid ligations and reveal an unappreciated level of SidE-family regulation.


Assuntos
Proteínas de Bactérias/química , Dobramento de Proteína , Proteínas/química , Fatores de Virulência/química , Proteínas de Bactérias/metabolismo , Calmodulina/química , Catálise , Domínio Catalítico , Microscopia Crioeletrônica , Legionella/enzimologia , Mutagênese , Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Espectrometria de Fluorescência , Ubiquitina-Proteína Ligases/química , Fatores de Virulência/metabolismo
2.
Trends Biochem Sci ; 47(10): 875-891, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35585008

RESUMO

Progress towards understanding catalytically 'dead' protein kinases - pseudokinases - in biology and disease has hastened over the past decade. An especially lively area for structural biology, pseudokinases appear to be strikingly similar to their kinase relatives, despite lacking key catalytic residues. Distinct active- and inactive-like conformation states, which are crucial for regulating bona fide protein kinases, are conserved in pseudokinases and appear to be essential for function. We discuss recent structural data on conformational transitions and nucleotide binding by pseudokinases, from which some common principles emerge. In both pseudokinases and bona fide kinases, a conformational toggle appears to control the ability to interact with signaling effectors. We also discuss how biasing this conformational toggle may provide opportunities to target pseudokinases pharmacologically in disease.


Assuntos
Proteínas Quinases , Transdução de Sinais , Conformação Molecular , Proteínas Quinases/metabolismo
3.
Plant Physiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748589

RESUMO

The highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) is a bacterial pathogen recognition hub that mediates resistance by guarding host kinases for modification by pathogen effectors. The pseudokinase HOPZ-ETI DEFICIENT 1 (ZED1) is the only known ZAR1-guarded protein that interacts directly with a pathogen effector, HopZ1a, from the bacterial pathogen Pseudomonas syringae, making it a promising system for rational design of effector recognition for plant immunity. Here, we conducted an in-depth molecular analysis of ZED1. We generated a library of 164 random ZED1 mutants and identified 50 mutants that could not recognize the effector HopZ1a when transiently expressed in Nicotiana benthamiana. Based on our random mutants, we generated a library of 27 point mutants and found evidence of minor functional divergence between Arabidopsis (Arabidopsis thaliana) and N. benthamiana ZAR1 orthologs. We leveraged our point mutant library to identify regions in ZED1 critical for ZAR1 and HopZ1a interactions and identified two likely ZED1-HopZ1a binding conformations. We explored ZED1 nucleotide and cation binding activity and showed that ZED1 is a catalytically dead pseudokinase, functioning solely as an allosteric regulator upon effector recognition. We used our library of ZED1 point mutants to identify the ZED1 activation loop regions as the most likely cause of interspecies ZAR1-ZED1 incompatibility. Finally, we identified a mutation that abolished ZAR1-ZED1 interspecies incompatibility while retaining the ability to mediate HopZ1a recognition, which enabled recognition of HopZ1a through tomato (Solanum lycopersicum) ZAR1. This provides an example of expanded effector recognition through a ZAR1 ortholog from a non-model species.

4.
Mol Cell ; 67(3): 528-534.e3, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28757208

RESUMO

The class III phosphatidylinositol 3-kinase complex I (PI3KC3-C1) is required for the initiation of essentially all macroautophagic processes. PI3KC3-C1 consists of the lipid kinase catalytic subunit VPS34, the VPS15 scaffold, and the regulatory BECN1 and ATG14 subunits. The VPS34 catalytic domain and BECN1:ATG14 subcomplex do not touch, and it is unclear how allosteric signals are transmitted to VPS34. We used EM and crosslinking mass spectrometry to dissect five conformational substates of the complex, including one in which the VPS34 catalytic domain is dislodged from the complex but remains tethered by an intrinsically disordered linker. A "leashed" construct prevented dislodging without interfering with the other conformations, blocked enzyme activity in vitro, and blocked autophagy induction in yeast cells. This pinpoints the dislodging and tethering of the VPS34 catalytic domain, and its regulation by VPS15, as a master allosteric switch in autophagy induction.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Regulação Alostérica , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/química , Classe III de Fosfatidilinositol 3-Quinases/genética , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Mutação , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Relação Estrutura-Atividade , Proteína VPS15 de Distribuição Vacuolar/química , Proteína VPS15 de Distribuição Vacuolar/genética , Proteína VPS15 de Distribuição Vacuolar/metabolismo
5.
Eur J Neurosci ; 59(6): 1079-1098, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37667848

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive dysfunction and loss of dopaminergic neurons of the substantia nigra pars compacta (SNc). Several pathways of programmed cell death are likely to play a role in dopaminergic neuron death, such as apoptosis, necrosis, pyroptosis and ferroptosis, as well as cell death associated with proteasomal and mitochondrial dysfunction. A better understanding of the molecular mechanisms underlying dopaminergic neuron death could inform the design of drugs that promote neuron survival. Necroptosis is a recently characterized regulated cell death mechanism that exhibits morphological features common to both apoptosis and necrosis. It requires activation of an intracellular pathway involving receptor-interacting protein 1 kinase (RIP1 kinase, RIPK1), receptor-interacting protein 3 kinase (RIP3 kinase, RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL). The potential involvement of this programmed cell death pathway in the pathogenesis of PD has been studied by analysing biomarkers for necroptosis, such as the levels and oligomerization of phosphorylated RIPK3 (pRIPK3) and phosphorylated MLKL (pMLKL), in several PD preclinical models and in PD human tissue. Although there is evidence that other types of cell death also have a role in DA neuron death, most studies support the hypothesis that this cell death mechanism is activated in PD tissues. Drugs that prevent or reduce necroptosis may provide neuroprotection for PD. In this review, we summarize the findings from these studies. We also discuss how manipulating necroptosis might open a novel therapeutic approach to reduce neuronal degeneration in PD.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Humanos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Necroptose , Morte Celular , Apoptose , Necrose/metabolismo , Necrose/patologia , Dopamina/metabolismo
6.
Oral Dis ; 30(2): 537-550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650945

RESUMO

OBJECTIVES: To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI). METHODS: Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized. RESULTS: All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin-enamel junction were observed. CONCLUSIONS: We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Mutação , Proteínas do Esmalte Dentário/genética , Fósforo , Minerais , Carbono
7.
Biochem J ; 480(2): 141-160, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36520605

RESUMO

Pseudokinases, so named because they lack one or more conserved canonical amino acids that define their catalytically active relatives, have evolved a variety of biological functions in both prokaryotic and eukaryotic organisms. Human PSKH2 is closely related to the canonical kinase PSKH1, which maps to the CAMK family of protein kinases. Primates encode PSKH2 in the form of a pseudokinase, which is predicted to be catalytically inactive due to loss of the invariant catalytic Asp residue. Although the biological role(s) of vertebrate PSKH2 proteins remains unclear, we previously identified species-level adaptions in PSKH2 that have led to the appearance of kinase or pseudokinase variants in vertebrate genomes alongside a canonical PSKH1 paralog. In this paper we confirm that, as predicted, PSKH2 lacks detectable protein phosphotransferase activity, and exploit structural informatics, biochemistry and cellular proteomics to begin to characterise vertebrate PSKH2 orthologues. AlphaFold 2-based structural analysis predicts functional roles for both the PSKH2 N- and C-regions that flank the pseudokinase domain core, and cellular truncation analysis confirms that the N-terminal domain, which contains a conserved myristoylation site, is required for both stable human PSKH2 expression and localisation to a membrane-rich subcellular fraction containing mitochondrial proteins. Using mass spectrometry-based proteomics, we confirm that human PSKH2 is part of a cellular mitochondrial protein network, and that its expression is regulated through client-status within the HSP90/Cdc37 molecular chaperone system. HSP90 interactions are mediated through binding to the PSKH2 C-terminal tail, leading us to predict that this region might act as both a cis and trans regulatory element, driving outputs linked to the PSKH2 pseudokinase domain that are important for functional signalling.


Assuntos
Proteínas Quinases , Transdução de Sinais , Animais , Humanos , Proteínas Quinases/metabolismo , Fosforilação , Chaperonas Moleculares/metabolismo , Evolução Biológica , Proteínas de Choque Térmico HSP90/metabolismo
8.
Trends Biochem Sci ; 44(1): 53-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30509860

RESUMO

The recent implication of the cell death pathway, necroptosis, in innate immunity and a range of human pathologies has led to intense interest in the underlying molecular mechanism. Unlike the better-understood apoptosis pathway, necroptosis is a caspase-independent pathway that leads to cell lysis and release of immunogens downstream of death receptor and Toll-like receptor (TLR) ligation. Here we review the role of recent structural studies of the core machinery of the pathway, the protein kinases receptor-interacting protein kinase (RIPK)1 and RIPK3, and the terminal effector, the pseudokinase mixed lineage kinase domain-like protein (MLKL), in shaping our mechanistic understanding of necroptotic signaling. Structural studies have played a key role in establishing models that describe MLKL's transition from a dormant monomer to a killer oligomer and revealing important interspecies differences.


Assuntos
Morte Celular , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Humanos , Conformação Proteica , Proteínas Quinases/química , Proteína Serina-Treonina Quinases de Interação com Receptores/química
9.
J Biol Chem ; 298(2): 101556, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973338

RESUMO

Enzalutamide, a second-generation antiandrogen, is commonly prescribed for the therapy of advanced prostate cancer, but enzalutamide-resistant, lethal, or incurable disease invariably develops. To understand the molecular mechanism(s) behind enzalutamide resistance, here, we comprehensively analyzed a range of prostate tumors and clinically relevant models by gene expression array, immunohistochemistry, and Western blot, which revealed that enzalutamide-resistant prostate cancer cells and tumors overexpress the pseudokinase, Tribbles 2 (TRIB2). Inhibition of TRIB2 decreases the viability of enzalutamide-resistant prostate cancer cells, suggesting a critical role of TRIB2 in these cells. Moreover, the overexpression of TRIB2 confers resistance in prostate cancer cells to clinically relevant doses of enzalutamide, and this resistance is lost upon inhibition of TRIB2. Interestingly, we found that TRIB2 downregulates the luminal markers androgen receptor and cytokeratin 8 in prostate cancer cells but upregulates the neuronal transcription factor BRN2 (Brain-2) and the stemness factor SOX2 (SRY-box 2) to induce neuroendocrine characteristics. Finally, we show that inhibition of either TRIB2 or its downstream targets, BRN2 or SOX2, resensitizes resistant prostate cancer cells to enzalutamide. Thus, TRIB2 emerges as a potential new regulator of transdifferentiation that confers enzalutamide resistance in prostate cancer cells via a mechanism involving increased cellular plasticity and lineage switching.


Assuntos
Benzamidas , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Nitrilas , Feniltioidantoína , Neoplasias da Próstata , Benzamidas/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Plasticidade Celular , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
10.
Circulation ; 146(22): 1674-1693, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36321451

RESUMO

BACKGROUND: ALPK3 encodes α-kinase 3, a muscle-specific protein of unknown function. ALPK3 loss-of-function variants cause cardiomyopathy with distinctive clinical manifestations in both children and adults, but the molecular functions of ALPK3 remain poorly understood. METHODS: We explored the putative kinase activity of ALPK3 and the consequences of damaging variants using isogenic human induced pluripotent stem cell-derived cardiomyocytes, mice, and human patient tissues. RESULTS: Multiple sequence alignment of all human α-kinase domains and their orthologs revealed 4 conserved residues that were variant only in ALPK3, demonstrating evolutionary divergence of the ALPK3 α-kinase domain sequence. Phosphoproteomic evaluation of both ALPK3 kinase domain inhibition and overexpression failed to detect significant changes in catalytic activity, establishing ALPK3 as a pseudokinase. Investigations into alternative functions revealed that ALPK3 colocalized with myomesin proteins (MYOM1, MYOM2) at both the nuclear envelope and the sarcomere M-band. ALPK3 loss-of-function variants caused myomesin proteins to mislocalize and also dysregulated several additional M-band proteins involved in sarcomere protein turnover, which ultimately impaired cardiomyocyte structure and function. CONCLUSIONS: ALPK3 is an essential cardiac pseudokinase that inserts in the nuclear envelope and the sarcomere M-band. Loss of ALPK3 causes mislocalization of myomesins, critical force-buffering proteins in cardiomyocytes, and also dysregulates M-band proteins necessary for sarcomere protein turnover. We conclude that ALPK3 cardiomyopathy induces ventricular dilatation caused by insufficient myomesin-mediated force buffering and hypertrophy by impairment of sarcomere proteostasis.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Proteínas Musculares , Proteínas Quinases , Adulto , Animais , Criança , Humanos , Camundongos , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Conectina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Proteínas Quinases/genética
11.
EMBO J ; 38(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30692133

RESUMO

COP1 is a highly conserved ubiquitin ligase that regulates diverse cellular processes in plants and metazoans. Tribbles pseudokinases, which only exist in metazoans, act as scaffolds that interact with COP1 and its substrates to facilitate ubiquitination. Here, we report that, in addition to this scaffolding role, TRIB1 promotes nuclear localization of COP1 by disrupting an intramolecular interaction between the WD40 domain and a previously uncharacterized regulatory site within COP1. This site, which we have termed the pseudosubstrate latch (PSL), resembles the consensus COP1-binding motif present in known COP1 substrates. Our findings support a model in which binding of the PSL to the WD40 domain stabilizes a conformation of COP1 that is conducive to CRM1-mediated nuclear export, and TRIB1 displaces this intramolecular interaction to induce nuclear retention of COP1. Coevolution of Tribbles and the PSL in metazoans further underscores the importance of this role of Tribbles in regulating COP1 function.


Assuntos
Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carioferinas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Repetições WD40 , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Núcleo Celular/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Carioferinas/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Homologia de Sequência , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteína Exportina 1
12.
Cell Commun Signal ; 21(1): 287, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845748

RESUMO

BACKGROUND: As a member of the Janus kinase (JAK) family, which includes JAK1, JAK2 and JAK3, tyrosine kinase 2 (TYK2) plays an important role in signal transduction and immune system regulation. Moreover, it is also involved in the development of many types of inflammatory and autoimmune diseases, such as psoriasis and systemic lupus erythematosus (SLE). TYK2 is an attractive therapeutic target, and selective inhibition of TYK2 over other JAK family members is critical for the development of TYK2 small molecule inhibitors. However, targeting the catalytic region of the TYK2 ATP-binding site is a major challenge due to the high structural homology between the catalytic regions of the JAK family proteins. RESULTS: In this study, we developed a novel small molecule inhibitor (QL-1200186) by targeting the pseudokinase regulatory domain (Janus homology 2, JH2) of the TYK2 protein. The binding sites of QL-1200186 were predicted and screened by molecular docking. The inhibitory effects on IFNα, IL-12 and IL-23 signaling were tested in cell lines, human peripheral blood cells and human whole blood. The pharmacokinetic (PK) and pharmacodynamic properties of QL-1200186 were verified in mice. QL-1200186 showed high affinity for TYK2 JH2 and had no apparent selectivity for the TYK2 and JAK homologous kinase domains; these effects were demonstrated using biochemical binding, signaling pathway transduction (JAK1/2/3) and off-target effect assays. More importantly, we revealed that QL-1200186 was functionally comparable and selectivity superior to two clinical-stage TYK2 inhibitors (BMS-986165 and NDI-034858) in vitro. In the PK studies, QL-1200186 exhibited excellent exposure, high bioavailability and low clearance rates in mice. Oral administration of QL-1200186 dose-dependently inhibited interferon-γ (IFNγ) production after interleukin-12 (IL-12) challenge and significantly ameliorated skin lesions in psoriatic mice. CONCLUSION: These findings suggest that QL-1200186 is a highly selective and potent inhibitor of TYK2. QL-1200186 could be an appealing clinical drug candidate for the treatment of psoriasis and other autoimmune diseases. Video Abstract.


Assuntos
Doenças Autoimunes , Psoríase , Humanos , Camundongos , Animais , TYK2 Quinase/química , TYK2 Quinase/metabolismo , Simulação de Acoplamento Molecular , Janus Quinases/metabolismo , Inflamação , Interleucina-12 , Psoríase/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
13.
Pharmacol Res ; 189: 106642, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754102

RESUMO

Psoriasis is a heterogeneous, inflammatory, autoimmune skin disease that affects up to 2% of the world's population. There are many treatment modalities including topical medicines, ultraviolet light therapy, monoclonal antibodies, and several oral medications. Cytokines play a central role in the pathogenesis of this disorder including TNF-α, (tumor necrosis factor-α) IL-17A (interleukin-17A), IL-17F, IL-22, and IL-23. Cytokine signaling involves transduction mediated by the JAK-STAT pathway. There are four JAKS (JAK1/2/3 and TYK2) and six STATS (signal transducer and activators of transcription). Janus kinases contain an inactive JH2 domain that is aminoterminal to the active JH1 domain. Under basal conditions, the JH2 domain inhibits the activity of the JH1 domain. Deucravacitinib is an orally effective N-trideuteromethyl-pyridazine derivative that targets and stabilizes the TYK2 JH2 domain and thereby blocks TYK2 JH1 activity. Seven other JAK inhibitors, which target the JAK family JH1 domain, are prescribed for the treatment of neoplastic and other inflammatory diseases. The use of deuterium in the trimethylamide decreases the rate of demethylation and slows the production of a metabolite that is active against a variety of targets in addition to TYK2. A second unique aspect in the development of deucravacitinib is the targeting of a pseudokinase domain. Deucravacitinib is rather specific for TYK2 and its toxic effects are much less than those of the other FDA-approved JAK inhibitors. The successful development of deucravacitinib may stimulate the development of additional pseudokinase ligands for the JAK family and for other kinase families as well.


Assuntos
Dermatite , Inibidores de Janus Quinases , Psoríase , Humanos , Janus Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Janus Quinases/uso terapêutico , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Psoríase/tratamento farmacológico , TYK2 Quinase/metabolismo , TYK2 Quinase/farmacologia
14.
Bioorg Med Chem Lett ; 86: 129235, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36907336

RESUMO

As a mediator of pro-inflammatory cytokines, TYK2 is an attractive target to treat autoimmunity diseases. Herein, we reported the design, synthesis, and structure-activity relationships (SARs) of N-(methyl-d3) pyridazine-3-carboxamide derivatives as TYK2 inhibitors. Among them, compound 24 exhibited acceptable inhibition activity against STAT3 phosphorylation. Furthermore, 24 showed satisfactory selectivities toward other members of JAK family and performed a good stability profile in liver microsomal assay. Pharmacokinetics (PK) study indicated that compound 24 has reasonable PK exposures. In anti-CD40-induced colitis models, compound 24 was orally highly effective with no significant hERG and CYP isozymes inhibition. These results indicated that compound 24 was worthy of further investigation for the development of anti-autoimmunity diseases agents.


Assuntos
Janus Quinases , TYK2 Quinase , Fosforilação , Inibidores de Proteínas Quinases
15.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047778

RESUMO

Overactive Janus kinases (JAKs) are known to drive leukemia, making them well-suited targets for treatment. We sought to identify new JAK-activating mutations and instead found a JAK1-inactivating pseudokinase mutation, V666G. In contrast to other pseudokinase mutations that canonically lead to an active kinase, the JAK1 V666G mutation led to under-activation seen by reduced phosphorylation. To understand the functional role of JAK1 V666G in modifying kinase activity we investigated its influence on other JAK kinases and within the Interleukin-2 pathway. JAK1 V666G not only inhibited its own activity, but its presence could inhibit other JAK kinases. These findings provide new insights into the potential of JAK1 pseudokinase to modulate its own activity, as well as of other JAK kinases. Thus, the features of the JAK1 V666 region in modifying JAK kinases can be exploited to allosterically inhibit overactive JAKs.


Assuntos
Interleucina-2 , Leucemia , Humanos , Fosforilação , Interleucina-2/genética , Interleucina-2/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Transdução de Sinais , Janus Quinases/metabolismo , Janus Quinase 3/genética , Janus Quinase 3/metabolismo
16.
Proteins ; 90(3): 747-764, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34708889

RESUMO

The bilobal protein kinase-like fold in pseudokinases lack one or more catalytic residues, conserved in canonical protein kinases, and are considered enzymatically deficient. Tertiary structures of pseudokinases reveal that their loops topologically equivalent to activation segments of kinases adopt contracted configurations, which is typically extended in active conformation of kinases. Herein, anisotropic network model based normal mode analysis (NMA) was conducted on 51 active conformation structures of protein kinases and 26 crystal structures of pseudokinases. Our observations indicate that although backbone fluctuation profiles are similar for individual kinase-pseudokinase families, low intensity mean square fluctuations in pseudo-activation segment and other sub-structures impart rigidity to pseudokinases. Analyses of collective motions from functional modes reveal that pseudokinases, compared to active kinases, undergo distinct conformational transitions using the same structural fold. All-atom NMA of protein kinase-pseudokinase pairs from each family, sharing high amino acid sequence identities, yielded distinct community clusters, partitioned by residues exhibiting highly correlated fluctuations. It appears that atomic fluctuations from equivalent activation segments guide community membership and network topologies for respective kinase and pseudokinase. Our findings indicate that such adaptations in backbone and side-chain fluctuations render pseudokinases competent for catalysis-independent roles.


Assuntos
Proteínas Quinases/química , Sequência de Aminoácidos , Domínio Catalítico , Bases de Dados de Proteínas , MAP Quinases Reguladas por Sinal Extracelular/química , Quinases Associadas a Receptores de Interleucina-1/química , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
17.
J Comput Aided Mol Des ; 36(8): 575-589, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35869378

RESUMO

ABSRACT: Pseudokinases have received increasing attention over the past decade because of their role in different physiological phenomena. Although pseudokinases lack several active-site residues, thereby hindering their catalytic activity, recent discoveries have shown that these proteins can play a role in intracellular signaling thanks to their non-catalytic functions. Integrin-linked kinase (ILK) was discovered more than two decades ago and was subsequently validated as a promising target for neoplastic diseases. Since then, only a few small-molecule inhibitors have been described, with the V-shaped pyrazole Cpd22 being the most interesting and characterized. However, little is known about its detailed mechanism of action at atomic level. In this study, using a combination of computational chemistry methods including PELE calculations, docking, molecular dynamics and experimental surface plasmon resonance, we were able to prove the direct binding of this molecule to ILK, thus providing the basis of its molecular recognition by the protein and the effect over its architecture. Our breakthroughs show that Cpd22 binding stabilizes the ILK domain by binding to the pseudo-active site in a similar way to the ATP, possibly modulating its scaffolding properties as pseudokinase. Moreover, our results explain the experimental observations obtained during Cpd22 development, thus paving the way to the development of new chemical probes and potential drugs.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Trifosfato de Adenosina , Humanos , Pirazóis
18.
Proc Natl Acad Sci U S A ; 116(13): 6361-6370, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850550

RESUMO

Apicomplexan parasites replicate within a protective organelle, called the parasitophorous vacuole (PV). The Toxoplasma gondii PV is filled with a network of tubulated membranes, which are thought to facilitate trafficking of effectors and nutrients. Despite being critical to parasite virulence, there is scant mechanistic understanding of the network's functions. Here, we identify the parasite-secreted kinase WNG1 (With-No-Gly-loop) as a critical regulator of tubular membrane biogenesis. WNG1 family members adopt an atypical protein kinase fold lacking the glycine rich ATP-binding loop that is required for catalysis in canonical kinases. Unexpectedly, we find that WNG1 is an active protein kinase that localizes to the PV lumen and phosphorylates PV-resident proteins, several of which are essential for the formation of a functional intravacuolar network. Moreover, we show that WNG1-dependent phosphorylation of these proteins is required for their membrane association, and thus their ability to tubulate membranes. Consequently, WNG1 knockout parasites have an aberrant PV membrane ultrastructure. Collectively, our results describe a unique family of Toxoplasma kinases and implicate phosphorylation of secreted proteins as a mechanism of regulating PV development during parasite infection.


Assuntos
Membranas/metabolismo , Membranas/ultraestrutura , Proteínas Quinases/metabolismo , Toxoplasma/metabolismo , Toxoplasma/ultraestrutura , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Cristalografia por Raios X , Técnicas de Inativação de Genes , Interações Hospedeiro-Parasita , Modelos Moleculares , Fosforilação , Conformação Proteica , Proteínas Quinases/genética , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Toxoplasma/genética , Toxoplasma/patogenicidade , Virulência
19.
Proc Natl Acad Sci U S A ; 116(31): 15495-15504, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311869

RESUMO

Members of the New Kinase Family 3 (NKF3), PEAK1/SgK269 and Pragmin/SgK223 pseudokinases, have emerged as important regulators of cell motility and cancer progression. Here, we demonstrate that C19orf35 (PEAK3), a newly identified member of the NKF3 family, is a kinase-like protein evolutionarily conserved across mammals and birds and a regulator of cell motility. In contrast to its family members, which promote cell elongation when overexpressed in cells, PEAK3 overexpression does not have an elongating effect on cell shape but instead is associated with loss of actin filaments. Through an unbiased search for PEAK3 binding partners, we identified several regulators of cell motility, including the adaptor protein CrkII. We show that by binding to CrkII, PEAK3 prevents the formation of CrkII-dependent membrane ruffling. This function of PEAK3 is reliant upon its dimerization, which is mediated through a split helical dimerization domain conserved among all NKF3 family members. Disruption of the conserved DFG motif in the PEAK3 pseudokinase domain also interferes with its ability to dimerize and subsequently bind CrkII, suggesting that the conformation of the pseudokinase domain might play an important role in PEAK3 signaling. Hence, our data identify PEAK3 as an NKF3 family member with a unique role in cell motility driven by dimerization of its pseudokinase domain.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Multimerização Proteica , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células COS , Membrana Celular/metabolismo , Forma Celular , Chlorocebus aethiops , Sequência Conservada , Proteínas do Citoesqueleto/química , Evolução Molecular , Células HEK293 , Humanos , Filogenia , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteínas Tirosina Quinases/química
20.
Biochem Genet ; 60(2): 598-610, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34327615

RESUMO

The present study established a necroptosis model in vitro and investigated the role of HMGB1 in cell necroptosis. A combination of tumor necrosis factor-α and z-VAD-fmk was used to induce necroptosis in L929 cells with necroptosis inhibitor necrostatin-1 applied as an intervention. Flow cytometry and transmission electron microscopy (TEM) were used to measure cell necroptosis. Western blotting assay was applied to detect the expression of receptor-interacting serine/threonine-protein kinase 3 (RIPK3), mixed lineage kinase domain-like pseudokinase (MLKL) and HMGB1. Co-immunoprecipitation (Co-IP) assay was used to confirm the interaction between HMGB1 and RIPK3. Our study demonstrated that HMGB1 migrated from the nucleus to the cytoplasm at the onset of necroptosis and was subsequently released passively to the extracellular matrix. Further experiments determined that the binding of HMGB1 with RIPK3 in the cytoplasm was loose during necroptosis. By contrast, when necroptosis was inhibited, the interaction in the cytoplasm was tight suggesting that this association between HMGB1 and RIPK3 might affect its occurrence. In conclusion, the transfer of HMGB1 from nucleus to cytoplasm, and its interaction with RIPK3 might be potentially involved in necroptosis.


Assuntos
Proteína HMGB1 , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose , Linhagem Celular , Citoplasma/metabolismo , Proteína HMGB1/metabolismo , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA