Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Plant J ; 117(3): 729-746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932930

RESUMO

Stylo (Stylosanthes guianensis) is a tropical legume known for its exceptional tolerance to low phosphate (Pi), a trait believed to be linked to its high acid phosphatase (APase) activity. Previous studies have observed genotypic variations in APase activity in stylo; however, the gene encoding the crucial APase responsible for this variation remains unidentified. In this study, transcriptomic and proteomic analyses were employed to identify eight Pi starvation-inducible (PSI) APases belonging to the purple APase (PAP) family in the roots of stylo and seven in the leaves. Among these PSI-PAPs, SgPAP7 exhibited a significantly positive correlation in its expression levels with the activities of both internal APase and root-associated APase across 20 stylo genotypes under low-Pi conditions. Furthermore, the recombinant SgPAP7 displayed high catalytic activity toward adenosine 5'-diphosphate (ADP) and phosphoenolpyruvate (PEP) in vitro. Overexpression (OE) of SgPAP7 in Arabidopsis facilitated exogenous organic phosphorus utilization. Moreover, SgPAP7 OE lines showed lower shoot ADP and PEP levels than the wild type, implying that SgPAP7 is involved in the catabolism and recycling of endogenous ADP and PEP, which could be beneficial for plant growth in low-Pi soils. In conclusion, SgPAP7 is a key gene with a major role in stylo adaptation to low-Pi conditions by facilitating the utilization of both exogenous and endogenous organic phosphorus sources. It may also function as a PEP phosphatase involved in a glycolytic bypass pathway that minimizes the need for adenylates and Pi. Thus, SgPAP7 could be a promising target for improving tolerance of crops to low-Pi availability.


Assuntos
Arabidopsis , Fabaceae , Fabaceae/genética , Fabaceae/metabolismo , Multiômica , Proteômica , Fósforo/metabolismo , Verduras/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Arabidopsis/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612461

RESUMO

Legume crops establish symbiosis with nitrogen-fixing rhizobia for biological nitrogen fixation (BNF), a process that provides a prominent natural nitrogen source in agroecosystems; and efficient nodulation and nitrogen fixation processes require a large amount of phosphorus (P). Here, a role of GmPAP4, a nodule-localized purple acid phosphatase, in BNF and seed yield was functionally characterized in whole transgenic soybean (Glycine max) plants under a P-limited condition. GmPAP4 was specifically expressed in the infection zones of soybean nodules and its expression was greatly induced in low P stress. Altered expression of GmPAP4 significantly affected soybean nodulation, BNF, and yield under the P-deficient condition. Nodule number, nodule fresh weight, nodule nitrogenase, APase activities, and nodule total P content were significantly increased in GmPAP4 overexpression (OE) lines. Structural characteristics revealed by toluidine blue staining showed that overexpression of GmPAP4 resulted in a larger infection area than wild-type (WT) control. Moreover, the plant biomass and N and P content of shoot and root in GmPAP4 OE lines were also greatly improved, resulting in increased soybean yield in the P-deficient condition. Taken together, our results demonstrated that GmPAP4, a purple acid phosphatase, increased P utilization efficiency in nodules under a P-deficient condition and, subsequently, enhanced symbiotic BNF and seed yield of soybean.


Assuntos
Glycine max , Fixação de Nitrogênio , Glycine max/genética , Fixação de Nitrogênio/genética , Simbiose/genética , Sementes/genética , Fósforo , Nitrogênio
3.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982472

RESUMO

Improvement in acid phosphatase (APase) activity is considered as an important approach to enhance phosphorus (P) utilization in crops. Here, GmPAP14 was significantly induced by low P (LP), and its transcription level in ZH15 (P efficient soybean) was higher than in NMH (P inefficient soybean) under LP conditions. Further analyses demonstrated that there were several variations in gDNA (G-GmPAP14Z and G-GmPAP14N) and the promoters (P-GmPAP14Z and P-GmPAP14N) of GmPAP14, which might bring about differential transcriptional levels of GmPAP14 in ZH15 and NMH. Histochemical staining measurements revealed that a stronger GUS signal was present in transgenic Arabidopsis with P-GmPAP14Z under LP and normal P (NP) conditions compared with the P-GmPAP14N plant. Functional research demonstrated that transgenic Arabidopsis with G-GmPAP14Z had a higher level of GmPAP14 expression than the G-GmPAP14N plant. Meanwhile, higher APase activity was also observed in the G-GmPAP14Z plant, which led to increases in shoot weight and P content. Additionally, validation of variation in 68 soybean accessions showed that varieties with Del36 displayed higher APase activities than the del36 plant. Thus, these results uncovered that allelic variation in GmPAP14 predominantly altered gene expression to influence APase activity, which provided a possible direction for research of this gene in plants.


Assuntos
Arabidopsis , Fosfatase Ácida/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
J Exp Bot ; 73(5): 1623-1642, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34758072

RESUMO

A purple acid phosphatase, GmPAP2.1, from the soybean (Glycine max) cultivar L29 may function as a resistance factor acting against specific strains of Soybean mosaic virus (SMV). In this study, we found that overexpression of GmPAP2.1 from L29 conferred SMV resistance to a susceptible cultivar, Lee 74. We determined that GmPAP2.1 interacted with the SMV protein P1 in the chloroplasts, resulting in the up-regulation of the ICS1 gene, which in turn promoted the pathogen-induced salicylic acid (SA) pathway. SA accumulation was elevated in response to the co-expression of GmPAP2.1 and SMV, while transient knockdown of endogenous SA-related genes resulted in systemic infection by SMV strain G5H, suggesting that GmPAP2.1-derived resistance depended on the SA-pathway for the activation of a defense response. Our findings thus suggest that GmPAP2.1 purple acid phosphatase of soybean cultivar L29 functions as an SA-pathway-dependent resistance factor acting against SMV.


Assuntos
Glycine max , Potyvirus , Fosfatase Ácida , Doenças das Plantas/genética , Glycine max/genética , Glycine max/metabolismo
5.
J Exp Bot ; 73(1): 382-399, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34487166

RESUMO

A 35 kDa monomeric purple acid phosphatase (APase) was purified from cell wall extracts of Pi starved (-Pi) Arabidopsis thaliana suspension cells and identified as AtPAP17 (At3g17790) by mass spectrometry and N-terminal microsequencing. AtPAP17 was de novo synthesized and dual-localized to the secretome and/or intracellular fraction of -Pi or salt-stressed plants, or senescing leaves. Transiently expressed AtPAP17-green fluorescent protein localized to lytic vacuoles of the Arabidopsis suspension cells. No significant biochemical or phenotypical changes associated with AtPAP17 loss of function were observed in an atpap17 mutant during Pi deprivation, leaf senescence, or salinity stress. Nevertheless, AtPAP17 is hypothesized to contribute to Pi metabolism owing to its marked up-regulation during Pi starvation and leaf senescence, broad APase substrate selectivity and pH activity profile, and rapid repression and turnover following Pi resupply to -Pi plants. While AtPAP17 also catalyzed the peroxidation of luminol, which was optimal at pH 9.2, it exhibited a low Vmax and affinity for hydrogen peroxide relative to horseradish peroxidase. These results, coupled with absence of a phenotype in the salt-stressed or -Pi atpap17 mutant, do not support proposals that the peroxidase activity of AtPAP17 contributes to the detoxification of reactive oxygen species during stresses that trigger AtPAP17 up-regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glicoproteínas/metabolismo , Estresse Oxidativo , Fosfatos/metabolismo , Senescência Vegetal , Secretoma
6.
Environ Sci Technol ; 56(22): 16441-16452, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283689

RESUMO

Among ubiquitous phosphorus (P) reserves in environmental matrices are ribonucleic acid (RNA) and polyphosphate (polyP), which are, respectively, organic and inorganic P-containing biopolymers. Relevant to P recycling from these biopolymers, much remains unknown about the kinetics and mechanisms of different acid phosphatases (APs) secreted by plants and soil microorganisms. Here we investigated RNA and polyP dephosphorylation by two common APs, a plant purple AP (PAP) from sweet potato and a fungal phytase from Aspergillus niger. Trends of δ18O values in released orthophosphate during each enzyme-catalyzed reaction in 18O-water implied a different extent of reactivity. Subsequent enzyme kinetics experiments revealed that A. niger phytase had 10-fold higher maximum rate for polyP dephosphorylation than the sweet potato PAP, whereas the sweet potato PAP dephosphorylated RNA at a 6-fold faster rate than A. niger phytase. Both enzymes had up to 3 orders of magnitude lower reactivity for RNA than for polyP. We determined a combined phosphodiesterase-monoesterase mechanism for RNA and terminal phosphatase mechanism for polyP using high-resolution mass spectrometry and 31P nuclear magnetic resonance, respectively. Molecular modeling with eight plant and fungal AP structures predicted substrate binding interactions consistent with the relative reactivity kinetics. Our findings implied a hierarchy in enzymatic P recycling from P-polymers by phosphatases from different biological origins, thereby influencing the relatively longer residence time of RNA versus polyP in environmental matrices. This research further sheds light on engineering strategies to enhance enzymatic recycling of biopolymer-derived P, in addition to advancing environmental predictions of this P recycling by plants and microorganisms.


Assuntos
6-Fitase , 6-Fitase/química , 6-Fitase/genética , 6-Fitase/metabolismo , Fósforo , Monoéster Fosfórico Hidrolases/metabolismo , Cinética , Simulação de Acoplamento Molecular , Fosfatase Ácida/química , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Polifosfatos , Isótopos , Biopolímeros , RNA
7.
Physiol Mol Biol Plants ; 28(11-12): 1981-1993, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36573147

RESUMO

Phosphorus (P) is one of the limiting factors for plant growth and productivity due to its slow diffusion and immobilization in the soil which necessitates application of phosphatic fertilizers to meet the crop demand and obtain maximum yields. However, plants have evolved mechanisms to adapt to low P stress conditions either by increasing acquisition (alteration of belowground processes) or by internal inorganic P (Pi) utilization (cellular Pi homeostasis) or both. In this review, we have discussed the adaptive strategies that conserve the use of P and maintain cellular Pi homeostasis in the cytoplasm. These strategies involve modification in membrane lipid composition, flavanol/anthocyanin level, scavenging and reutilization of Pi adsorbed in cell wall pectin, remobilization of Pi during senescence by enzymes like RNases and purple acid phosphatases, alternative mitochondrial electron transport, and glycolytic pathways. The remobilization of Pi from senescing tissues and its internal redistribution to various cellular organelles is mediated by various Pi transporters. Although much efforts have been made to enhance P acquisition efficiency, an understanding of the physiological mechanisms conserving internal Pi and their manipulation would be useful for plants that can utilize P more efficiently to produce optimum growth per unit P uptake.

8.
J Exp Bot ; 72(8): 2918-2932, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33491071

RESUMO

Phosphorus (P) limitation affects phytoplankton growth and population size in aquatic systems, and consequently limits aquatic primary productivity. Plants have evolved a range of metabolic responses to cope with P limitation, such as accumulation of purple acid phosphatases (PAPs) to enhance acquisition of phosphates. However, it remains unknown whether algae have evolved a similar mechanism. In this study, we examined the role of PAPs in the model microalga Phaeodactylum tricornutum. Expression of PAP1 was enhanced in P. tricornutum cells grown on organophosphorus compared to inorganic phosphate. PAP1 overexpression improved cellular growth and biochemical composition in a growth-phase dependent manner. PAP1 promoted growth and photosynthesis during growth phases and reallocated carbon flux towards lipogenesis during the stationary phase. PAP1 was found to be localized in the endoplasmic reticulum and it orchestrated the expression of genes involved in key metabolic pathways and translocation of inorganic P (Pi), thereby improving energy use, reducing equivalents and antioxidant potential. RNAi of PAP1 induced expression of its homolog PAP2, thereby compensating for the Pi scavenging activity of PAP1. Our results demonstrate that PAP1 brings about sequential regulation of metabolism, and provide novel insights into algal phosphorus metabolism and aquatic primary productivity.


Assuntos
Diatomáceas , Fosfatase Ácida/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Hidrólise , Fósforo , Fotossíntese
9.
J Exp Bot ; 72(2): 199-223, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33211873

RESUMO

Inorganic phosphate (Pi) is an essential macronutrient required for many fundamental processes in plants, including photosynthesis and respiration, as well as nucleic acid, protein, and membrane phospholipid synthesis. The huge use of Pi-containing fertilizers in agriculture demonstrates that the soluble Pi levels of most soils are suboptimal for crop growth. This review explores recent advances concerning the understanding of adaptive metabolic processes that plants have evolved to alleviate the negative impact of nutritional Pi deficiency. Plant Pi starvation responses arise from complex signaling pathways that integrate altered gene expression with post-transcriptional and post-translational mechanisms. The resultant remodeling of the transcriptome, proteome, and metabolome enhances the efficiency of root Pi acquisition from the soil, as well as the use of assimilated Pi throughout the plant. We emphasize how the up-regulation of high-affinity Pi transporters and intra- and extracellular Pi scavenging and recycling enzymes, organic acid anion efflux, membrane remodeling, and the remarkable flexibility of plant metabolism and bioenergetics contribute to the survival of Pi-deficient plants. This research field is enabling the development of a broad range of innovative and promising strategies for engineering phosphorus-efficient crops. Such cultivars are urgently needed to reduce inputs of unsustainable and non-renewable Pi fertilizers for maximum agronomic benefit and long-term global food security and ecosystem preservation.


Assuntos
Ecossistema , Fósforo , Adaptação Fisiológica , Fertilizantes , Fosfatos , Raízes de Plantas
10.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298863

RESUMO

Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2), which is anchored to the outer membranes of chloroplasts and mitochondria, affects carbon metabolism by modulating the import of some preproteins into chloroplasts and mitochondria. AtPAP9 bears a 72% amino acid sequence identity with AtPAP2, and both proteins carry a hydrophobic motif at their C-termini. Here, we show that AtPAP9 is a tail-anchored protein targeted to the outer membrane of chloroplasts. Yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that both AtPAP9 and AtPAP2 bind to a small subunit of rubisco 1B (AtSSU1B) and a number of chloroplast proteins. Chloroplast import assays using [35S]-labeled AtSSU1B showed that like AtPAP2, AtPAP9 also plays a role in AtSSU1B import into chloroplasts. Based on these data, we propose that AtPAP9 and AtPAP2 perform overlapping roles in modulating the import of specific proteins into chloroplasts. Most plant genomes contain only one PAP-like sequence encoding a protein with a hydrophobic motif at the C-terminus. The presence of both AtPAP2 and AtPAP9 in the Arabidopsis genome may have arisen from genome duplication in Brassicaceae. Unlike AtPAP2 overexpression lines, the AtPAP9 overexpression lines did not exhibit early-bolting or high-seed-yield phenotypes. Their differential growth phenotypes could be due to the inability of AtPAP9 to be targeted to mitochondria, as the overexpression of AtPAP2 on mitochondria enhances the capacity of mitochondria to consume reducing equivalents.


Assuntos
Fosfatase Ácida/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sequência de Aminoácidos , Brassicaceae/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Genoma de Planta/genética , Mitocôndrias/genética
11.
Chembiochem ; 20(12): 1536-1540, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30719821

RESUMO

Purple acid phosphatases (PAPs) are members of the large family of metallohydrolases, a group of enzymes that perform a wide range of biological functions, while employing a highly conserved catalytic mechanism. PAPs are found in plants, animals and fungi; in humans they play an important role in bone turnover and are thus of interest for developing treatments for osteoporosis. The majority of metallohydrolases use a metal-bound hydroxide to initiate catalysis, which leads to the formation of a proposed five-coordinate oxyphosphorane species in the transition state. In this work, we crystallized PAP from red kidney beans (rkbPAP) in the presence of both adenosine and vanadate. The in crystallo-formed vanadate analogue of ADP provides detailed insight into the binding mode of a PAP substrate, captured in a structure that mimics the putative fivecoordinate transition state. Our observations not only provide unprecedented insight into the mechanism of metallohydrolases, but might also guide the structure-based design of inhibitors for application in the treatment of several human illnesses.


Assuntos
Fosfatase Ácida/química , Proteínas de Plantas/química , Catálise , Domínio Catalítico , Cinética , Modelos Moleculares , Phaseolus/metabolismo , Vanadatos/química
12.
Plant Cell Environ ; 42(6): 2015-2027, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30730567

RESUMO

Arbuscules are the central structures of the symbiotic association between terrestrial plants and arbuscular mycorrhizal (AM) fungi. However, arbuscules are also ephemeral structures, and following development, these structures are soon digested and ultimately disappear. Currently, little is known regarding the mechanism underlying the digestion of senescent arbuscules. Here, biochemical and functional analyses were integrated to test the hypothesis that a purple acid phosphatase, GmPAP33, controls the hydrolysis of phospholipids during arbuscule degeneration. The expression of GmPAP33 was enhanced by AM fungal inoculation independent of the P conditions in soybean roots. Promoter-ß-glucuronidase (GUS) reporter assays revealed that the expression of GmPAP33 was mainly localized to arbuscule-containing cells during symbiosis. The recombinant GmPAP33 exhibited high hydrolytic activity towards phospholipids, phosphatidylcholine, and phosphatidic acid. Furthermore, soybean plants overexpressing GmPAP33 exhibited increased percentages of large arbuscules and improved yield and P content compared with wild-type plants when inoculated with AM fungi. Mycorrhizal RNAi plants had high phospholipid levels and a large percentage of small arbuscules. These results in combination with the subcellular localization of GmPAP33 at the plasma membrane indicate that GmPAP33 participates in arbuscule degeneration during AM symbiosis via involvement in phospholipid hydrolysis.


Assuntos
Fosfatase Ácida/metabolismo , Glycine max/metabolismo , Micorrizas/metabolismo , Raízes de Plantas/metabolismo , Fosfatase Ácida/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Glucuronidase , Fosfatos/metabolismo , Fosfolipídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Simbiose
13.
J Biol Inorg Chem ; 24(5): 675-691, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31267217

RESUMO

In this paper, the catalytic effects of aminoguanidine and aminopurine groups in the second sphere of a FeIIIZnII complex that mimics the active site of the metallohydrolase purple acid phosphatase (PAP) are investigated, with a particular view on DNA as substrate. The ligand 3-(((3-((bis(2-(pyridin-2-yl)ethyl)amino)methyl)-2-hydroxy-5-methylbenzyl)(pyridin-2-ylmethyl)amino)meth-yl)-2 hydroxy-5-methylbenzaldehyde-(H2L1bpea) was synthesized and its complex [(OH)FeIII(µ-OH)ZnII(H2O)(L1bpea)](ClO4) was used as a base for comparison with similar complexes previously published in the literature. Subsequent modifications were conducted in the aldehyde group, where aminoguanidine (amig) and aminopurine (apur) were used as side chain derivatives. The complexes [(OH)FeIII(µ-OH)ZnII(H2O)(L1bpea)](ClO4) (1), [(OH)FeIII(µ-OH)ZnII(H2O)(L1bpea-amig)](ClO4) (2) and [(OH)FeIII(µ-OH)ZnII(H2O)(L1bpea-apur)](ClO4) (3) were characterized by spectroscopic methods (infrared, UV-Vis) and ESI-MS spectrometry. Density functional theory (DFT) was also used to better understand the structure of the complexes. The hydrolytic activity of complexes 1, 2 and 3 was analyzed using both the model substrate 2,4-BDNPP (bis-(2,4-dinitrophenyl)phosphate) and DNA. Complexes 2 and 3, containing the derivatized ligands, have a significantly higher association constant (Kassoc≅ 1/KM) for the activated substrate 2,4-BDNPP compared to complex 1. The catalytic efficiency (kcat/KM) is also higher due to hydrogen bonds and/or π-stacking interactions between the substrate and the aminoguanidine or aminopurine groups present in 2 and 3, respectively. In the DNA cleavage assays, all complexes were able to cleave DNA, with 1 and 2 having higher catalytic activity than 3. In addition, when compared to previously analyzed complexes, complex 2 is one of the most active, having a kcat of 0.21 h-1.


Assuntos
Complexos de Coordenação/química , DNA/química , Compostos Férricos/química , Guanidina/química , Purinas/química , Zinco/química , Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Clivagem do DNA , Hidrólise
14.
Int J Mol Sci ; 20(10)2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109025

RESUMO

Phytases are pro-nutritional enzymes that hydrolyze phytate and make associated nutrients, such as phosphorous, iron, and zinc, bioavailable. Single-stomached animals and humans depend on phytase supplied through the diet or the action of phytase on the food before ingestion. As a result, phytases-or lack thereof-have a profound impact on agricultural ecosystems, resource management, animal health, and public health. Wheat, barley and their Triticeae relatives make exceptionally good natural sources of phytase. This review highlights advances in the understanding of the molecular basis of the phytase activity in wheat and barley, which has taken place over the past decade. It is shown how the phytase activity in the mature grains of wheat and barley can be ascribed to the PAPhy_a gene, which exists as a single gene in barley and in two or three homeologous copies in tetra- and hexaploid wheat, respectively. It is discussed how understanding the function and regulation of PAPhy_a may support the development of improved wheat and barley with even higher phytase activity.


Assuntos
6-Fitase/genética , 6-Fitase/metabolismo , Hordeum/enzimologia , Hordeum/genética , Triticum/enzimologia , Triticum/genética , 6-Fitase/química , 6-Fitase/classificação , Fenômenos Bioquímicos , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal
15.
Plant Cell Environ ; 41(7): 1483-1496, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29520969

RESUMO

Orthophosphate (H2 PO4- , Pi) is an essential macronutrient integral to energy metabolism as well as a component of membrane lipids, nucleic acids, including ribosomal RNA, and therefore essential for protein synthesis. The Pi concentration in the solution of most soils worldwide is usually far too low for maximum growth of crops, including rice. This has prompted the massive use of inefficient, polluting, and nonrenewable phosphorus (P) fertilizers in agriculture. We urgently need alternative and more sustainable approaches to decrease agriculture's dependence on Pi fertilizers. These include manipulating crops by (a) enhancing the ability of their roots to acquire limiting Pi from the soil (i.e. increased P-acquisition efficiency) and/or (b) increasing the total biomass/yield produced per molecule of Pi acquired from the soil (i.e. increased P-use efficiency). Improved P-use efficiency may be achieved by producing high-yielding plants with lower P concentrations or by improving the remobilization of acquired P within the plant so as to maximize growth and biomass allocation to developing organs. Membrane lipid remodelling coupled with hydrolysis of RNA and smaller P-esters in senescing organs fuels P remobilization in rice, the world's most important cereal crop.


Assuntos
Oryza/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Fertilizantes , Raízes de Plantas/metabolismo
16.
Plant Cell Environ ; 41(12): 2821-2834, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30066375

RESUMO

As a major component of soil organic phosphorus (P), phytate-P is unavailable to plants unless hydrolysed by phytase to release inorganic phosphate. However, knowledge on natural variation in root-associated phytase activity and its underlying molecular mechanisms in plants remains fragmentary. In this study, variations in root internal and associated phytase activity were observed among 39 genotypes of Stylosanthes guianensis (Stylo), which is well adapted to acid soils. Furthermore, TPRC2001-1, the genotype with the highest root-associated phytase activity, was more capable of utilizing extracellular phytate-P than Fine-stem, the genotype with the lowest root-associated phytase activity. After protein liquid chromatography-tandem mass spectrometry analysis, a purple acid phosphatase (PAP), SgPAP23, was identified and cloned from TPRC2001-1. SgPAP23 exhibited high activity against phytate-P and was mainly localized on the plasma membrane. Furthermore, SgPAP23 overexpression resulted in significant increases of root-associated phytase activity and thus facilitated extracellular phytate-P utilization in both bean (Phaseolus vulgaris) hairy roots and Arabidopsis thaliana. The results herein support the conclusion that SgPAP23 is a primary contributor to the superior extracellular phytate-P utilization in stylo and thus is used to develop cultivars with efficient extracellular phytate-P utilization.


Assuntos
Fosfatase Ácida/metabolismo , Fabaceae/enzimologia , Ácido Fítico/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , 6-Fitase/metabolismo , Arabidopsis , Cromatografia Líquida , Clonagem Molecular , Fabaceae/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
17.
J Exp Bot ; 69(3): 603-617, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29329437

RESUMO

Plant root cell walls are dynamic systems that serve as the first plant compartment responsive to soil conditions, such as phosphorus (P) deficiency. To date, evidence for the regulation of root cell wall proteins (CWPs) by P deficiency remains sparse. In order to gain a better understanding of the roles played by CWPs in the roots of soybean (Glycine max) in adaptation to P deficiency, we conducted an iTRAQ (isobaric tag for relative and absolute quantitation) proteomic analysis. A total of 53 CWPs with differential accumulation in response to P deficiency were identified. Subsequent qRT-PCR analysis correlated the accumulation of 21 of the 27 up-regulated proteins, and eight of the 26 down-regulated proteins with corresponding gene expression patterns in response to P deficiency. One up-regulated CWP, purple acid phosphatase 1-like (GmPAP1-like), was functionally characterized. Phaseolus vulgaris transgenic hairy roots overexpressing GmPAP1-like displayed an increase in root-associated acid phosphatase activity. In addition, relative growth and P content were significantly enhanced in GmPAP1-like overexpressing lines compared to control lines when deoxy-ribonucleotide triphosphate (dNTP) was applied as the sole external P source. Taken together, the results suggest that the modulation of CWPs may regulate complex changes in the root system in response to P deficiency, and that the cell wall-localized GmPAP1-like protein is involved in extracellular dNTP utilization in soybean.


Assuntos
Glycine max/genética , Proteínas de Plantas/genética , Polifosfatos/metabolismo , Fatores de Transcrição/genética , Parede Celular/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteômica , Glycine max/metabolismo , Fatores de Transcrição/metabolismo
18.
Planta ; 243(3): 699-717, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26649560

RESUMO

MAIN CONCLUSION: This work identifies new protein phosphatases and phosphatase-related proteins targeting peroxisomes, and raises the question of a novel protein import pathway from ER to peroxisomes involving peroxisomal targeting signal type 1 (PTS1) Plant peroxisomes are essential for several processes, for example lipid metabolism, free radical detoxification, development, and stress-related functions. Although research on peroxisomes has been intensified, reversible phosphorylation as a control mechanism in peroxisomes is barely studied. Therefore, it is crucial to identify all peroxisomal proteins involved in phosphoregulation. We here started with protein phosphatases, and searched the Arabidopsis thaliana genome for phosphatase-related proteins with putative peroxisomal targeting signals (PTS). Five potential peroxisomal candidates were detected, from which four were confirmed to target peroxisomes or have a functional PTS. The highly conserved Ser-Ser-Met> was validated for two protein phosphatase 2C (PP2C) family members (POL like phosphatases, PLL2 and PLL3) as a functional peroxisomal targeting signal type 1 (PTS1). Full-length PLL2 and PLL3 fused with a reporter protein targeted peroxisomes in two plant expression systems. A putative protein phosphatase, purple acid phosphatase 7 (PAP7), was found to be dually targeted to ER and peroxisomes and experiments indicated a possible trafficking to peroxisomes via the ER depending on peroxisomal PTS1. In addition, a protein phosphatase 2A regulator (TIP41) was validated to harbor a functional PTS1 (Ser-Lys-Val>), but the full-length protein targeted cytosol and nucleus. Reverse genetics indicated a role for TIP41 in senescence signaling. Mass spectrometry of whole seedlings and isolated peroxisomes was employed, and identified new putative phosphorylated peroxisomal proteins. Previously, only one protein phosphatase, belonging to the phospho-protein phosphatase (PPP) family, was identified as a peroxisomal protein. The present work implies that members of two other main protein phosphatase families, i.e. PP2C and PAP, are also targeting peroxisomes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Genoma de Planta/genética , Peroxissomos/enzimologia , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Glicoproteínas/genética , Glicoproteínas/metabolismo , Fosforilação , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Plântula/enzimologia , Plântula/genética
19.
Plant Cell Environ ; 39(10): 2247-59, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27411391

RESUMO

Under phosphate (Pi ) starvation, plants increase the secretion of purple acid phosphatases (PAPs) into the rhizosphere to scavenge organic phosphorus (P) for plant use. To date, only a few members of the PAP family have been characterized in crops. In this study, we identified a novel secreted PAP in rice, OsPAP10c, and investigated its role in the utilization of external organic P. OsPAP10c belongs to a monocotyledon-specific subclass of Ia group PAPs and is specifically expressed in the epidermis/exodermis cell layers of roots. Both the transcript and protein levels of OsPAP10c are strongly induced by Pi starvation. OsPAP10c overexpression increased acid phosphatase (APase) activity by more than 10-fold in the culture media and almost fivefold in both roots and leaves under Pi -sufficient and Pi -deficient conditions. This increase in APase activity further improved the plant utilization efficiency of external organic P. Moreover, several APase isoforms corresponding to OsPAP10c were identified using in-gel activity assays. Under field conditions with three different Pi supply levels, OsPAP10c-overexpressing plants had significantly higher tiller numbers and shorter plant heights. This study indicates that OsPAP10c encodes a novel secreted APase that plays an important role in the utilization of external organic P in rice.


Assuntos
Fosfatase Ácida/fisiologia , Oryza/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/fisiologia , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Oryza/genética , Fósforo/farmacologia , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA Mensageiro/metabolismo
20.
J Exp Bot ; 67(14): 4141-54, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27194738

RESUMO

Stylo (Stylosanthes spp.) is a pasture legume predominant in tropical and subtropical areas, where low phosphorus (P) availability is a major constraint for plant growth. Therefore, stylo might exhibit superior utilization of the P pool on acid soils, particularly organic P. However, little is known about mechanisms of inorganic phosphate (Pi) acquisition employed by stylo. In this study, the utilization of extracellular deoxy-ribonucleotide triphosphate (dNTP) and the underlying physiological and molecular mechanisms were examined for two stylo genotypes with contrasting P efficiency. Results showed that the P-efficient genotype, TPRC2001-1, was superior to the P-inefficient genotype, Fine-stem, when using dNTP as the sole P source. This was reflected by a higher dry weight and total P content for TPRC2001-1 than for Fine-stem, which was correlated with higher root-associated acid phosphatase (APase) activities in TPRC2001-1 under low P conditions. Subsequently, three PAP members were cloned from TPRC2001-1: SgPAP7, SgPAP10, and SgPAP26 Expression levels of these three SgPAPs were up-regulated by Pi starvation in stylo roots. Furthermore, there was a higher abundance of transcripts of SgPAP7 and SgPAP10 in TPRC2001-1 than in Fine-stem. Subcellular localization analysis demonstrated that these three SgPAPs were localized on the plasma membrane. Overexpression of these three SgPAPs could result in significantly increased root-associated APase activities, and thus extracellular dNTP utilization in bean hairy roots. Taken together, the results herein suggest that SgPAP7, SgPAP10, and SgPAP26 may differentially contribute to root-associated APase activities, and thus control extracellular dNTP utilization in stylo.


Assuntos
Fosfatase Ácida/metabolismo , Desoxirribonucleotídeos/metabolismo , Fabaceae/enzimologia , Glicoproteínas/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/fisiologia , Fabaceae/genética , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Glicoproteínas/genética , Glicoproteínas/fisiologia , Filogenia , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA