Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(45)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39084629

RESUMO

The pyrochlore iridates,A2Ir2O7, show a wide variety of structural, electronic, and magnetic properties controlled by the interplay of different exchange interactions, which can be tuned by external pressure. In this work, we report pressure-induced iso-structural phase transitions at ambient temperature using synchrotron-based x-ray diffraction (up to ∼20 GPa) and Raman-scattering measurements (up to ∼25 GPa) of the pyrochlore series (Sm_{1-x}Bix)2Ir2O7(x= 0, 0.02, and 0.10). Our Raman and x-ray data suggest an iso-structural transition in Sm2Ir2O7atPc∼ 11.2 GPa, associated with the rearrangement of IrO6octahedra in the pyrochlore lattice. The transition pressure decreases to ∼10.2 and 9 GPa forx= 0.02 and 0.10, respectively. For all the samples, the linewidth of three phonons associated with Ir-O-Ir (A1gandEg) and Ir-O (T2g4) vibrations show anomalous decrease up toPc, due to decrease in electron-phonon interaction.

2.
J Phys Condens Matter ; 34(16)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35105826

RESUMO

We report the stoichiometric epitaxial growth of the Eu2Ir2O7(111) thin film on YSZ substrate by a two-step solid phase epitaxy (SPE) method. An optimized post-annealing environment of the SPE was superior over the conventional air annealing procedure to get rid of the typical impurity phase, Eu2O3. The thickness-dependent structural study on Eu2Ir2O7(111) thin films suggests a systematic control of Ir/Eu stoichiometry in our films, which is otherwise difficult to achieve. In addition, the low-temperature electrical resistivity studies strongly support the claim. The power-law dependence analysis of the resistivity data exhibits a power exponent of 0.52 in 50 nm sample suggesting possible disorder-driven semimetallic charge transport in the 3D Weyl semimetallic (WSM) candidate Eu2Ir2O7. In addition, the all-in-all-out/all-out-all-in antiferromagnetic domains of Ir4+sublattice is verified using the field cooled magnetoresistance measurements at 2 K. Hall resistivity analysis indicate semimetallic hole carrier type dominance near the Fermi level up to the measured temperature range of 2-120 K. Altogether, our study reveals the ground state of stoichiometric Eu2Ir2O7(111) thin film, with an indirect tuning of the off-stoichiometry using thickness of the samples, which is of interest in the search of the predicted 3D WSM phase.

3.
J Phys Condens Matter ; 34(39)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35817027

RESUMO

The pyrochlore iridates (Eu1-xBix)2Ir2O7(0⩽x⩽1) undergo an anomalous negative lattice expansion for small Bi-doping (x⩽0.035) (region I) and a normal lattice expansion forx⩾0.1(region II); this is accompanied by a transition from an insulating (and magnetically ordered) to a metallic (and with no magnetic ordering) ground state. Here, we investigate (Eu1-xBix)2Ir2O7(0⩽x⩽1) using hard x-ray photoemission spectroscopy and x-ray absorption fine structure (XAFS) spectroscopy. By analyzing the Eu-L3, Ir-L3and Bi-L2&L3edges x-ray absorption near edge structure spectra and Eu-3dcore-level XPS spectra, we show that the metal cations retain their nominal valence, namely, Ir4+, Bi3+and Eu3+, respectively, throughout the series. The Ir-4fand Bi-4fcore-level XPS spectra consist of screened and unscreened doublets. The unscreened component is dominant In the insulating range (x⩽0.035), and in the metallic region (x⩾0.1), the screened component dominates the spectra. The Eu-3dcore-level spectra remain invariant under Bi doping. The extended XAFS data show that the coordination around the Ir remains well preserved throughout the series. The evolution of the valence band spectra near the Fermi energy with increasing Bi doping indicates the presence of strong Ir(5d)-Bi(6p) hybridization which drives the metal-to-insulator transition.

4.
Adv Mater ; 33(25): e2008528, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33988861

RESUMO

Correlated topological phases (CTPs) with interplay between topology and electronic correlations have attracted tremendous interest in condensed matter physics. Therein, correlated Weyl semimetals (WSMs) are rare in nature and, thus, have so far been less investigated experimentally. In particular, the experimental realization of the interacting WSM state with logarithmic Fermi velocity renormalization has not been achieved yet. Here, experimental evidence of a correlated magnetic WSM state with logarithmic renormalization in strained pyrochlore iridate Pr2 Ir2 O7 (PIO) which is a paramagnetic Luttinger semimetal in bulk, is reported. Benefitting from epitaxial strain, "bulk-absent" all-in-all-out antiferromagnetic ordering can be stabilized in PIO film, which breaks time-reversal symmetry and leads to a magnetic WSM state. With further analysis of the experimental data and renormalization group calculations, an interacting Weyl liquid state with logarithmically renormalized Fermi velocity, similar to that in graphene, is found, dressed by long-range Coulomb interactions. This work highlights the interplay of strain, magnetism, and topology with electronic correlations, and paves the way for strain-engineering of CTPs in pyrochlore iridates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA