Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Environ Sci Technol ; 56(20): 14668-14679, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36178254

RESUMO

Chemical pollution has become a prominent environmental problem. In recent years, quantitative high-throughput screening (qHTS) assays have been developed for the fast assessment of chemicals' toxic effects. Toxicology in the 21st Century (Tox21) is a well-known and continuously developing qHTS project. Recent reports utilizing Tox21 data have mainly focused on setting up mathematical models for in vivo toxicity predictions, with less attention to intuitive qHTS data visualization. In this study, we attempted to reveal and summarize the toxic effects of environmental pollutants by analyzing and visualizing Tox21 qHTS data. Via PubMed text mining, toxicity/structure clustering, and manual classification, we detected a total of 158 chemicals of environmental concern (COECs) from the Tox21 library that we classified into 13 COEC groups based on structure and activity similarities. By visualizing these COEC groups' bioactivities, we demonstrated that COECs frequently displayed androgen and progesterone antagonistic effects, xenobiotic receptor agonistic roles, and mitochondrial toxicity. We also revealed many other potential targets of the 13 COEC groups, which were not well illustrated yet, and that current Tox21 assays may not correctly classify known teratogens. In conclusion, we provide a feasible method to intuitively understand qHTS data.


Assuntos
Poluentes Ambientais , Androgênios , Poluentes Ambientais/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Progesterona , Teratogênicos , Xenobióticos
2.
J Proteome Res ; 17(1): 579-589, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29261316

RESUMO

The new strategy for chemical toxicity testing and modeling is to use in vitro human cell-based assays in conjunction with quantitative high-throughput screening (qHTS) technology, to identify molecular mechanisms and predict in vivo responses. Stem cells are more physiologically relevant than immortalized cell lines because of their unique proliferation and differentiation potentials. We established a robust two stem cells-two lineages assay system, encompassing human mesenchymal stem cells (hMSCs) along osteogenesis and human induced pluripotent stem cells (hiPSCs) along hepatogenesis. We performed qHTS phenotypic screening of LOPAC1280 and identified 38 preliminary hits for hMSCs. This was followed by validation of a selected number of hits and determination of their IC50 values and mechanistic studies of idarubicin and cantharidin treatments using proteomics and bioinformatics. In general, hiPSCs were more sensitive than hMSCs to chemicals, and differentiated progenies were less sensitive than their progenitors. We showed that chemical toxicity depends on both stem cell types and their differentiation stages. Proteomics identified and quantified over 3000 proteins for both stem cells. Bioinformatics identified apoptosis and G2/M as the top pathways conferring idarubicin toxicity. Our Omics-based assays of stem cells provide mechanistic insights into chemical toxicity and may help prioritize chemicals for in-depth toxicological evaluations.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteômica/métodos , Testes de Toxicidade , Apoptose , Cantaridina/toxicidade , Células Cultivadas , Biologia Computacional/métodos , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Idarubicina/toxicidade , Proteínas/análise
3.
Adv Exp Med Biol ; 854: 597-603, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427464

RESUMO

High content analysis (HCA) has become a leading methodology in phenotypic drug discovery efforts. Typical HCA workflows include imaging cells using an automated microscope and analyzing the data using algorithms designed to quantify one or more specific phenotypes of interest. Due to the richness of high content data, unappreciated phenotypic changes may be discovered in existing image sets using interactive machine-learning based software systems. Primary postnatal day four retinal cells from the photoreceptor (PR) labeled QRX-EGFP reporter mice were isolated, seeded, treated with a set of 234 profiled kinase inhibitors and then cultured for 1 week. The cells were imaged with an Acumen plate-based laser cytometer to determine the number and intensity of GFP-expressing, i.e. PR, cells. Wells displaying intensities and counts above threshold values of interest were re-imaged at a higher resolution with an INCell2000 automated microscope. The images were analyzed with an open source HCA analysis tool, PhenoRipper (Rajaram et al., Nat Methods 9:635-637, 2012), to identify the high GFP-inducing treatments that additionally resulted in diverse phenotypes compared to the vehicle control samples. The pyrimidinopyrimidone kinase inhibitor CHEMBL-1766490, a pan kinase inhibitor whose major known targets are p38α and the Src family member lck, was identified as an inducer of photoreceptor neuritogenesis by using the open-source HCA program PhenoRipper. This finding was corroborated using a cell-based method of image analysis that measures quantitative differences in the mean neurite length in GFP expressing cells. Interacting with data using machine learning algorithms may complement traditional HCA approaches by leading to the discovery of small molecule-induced cellular phenotypes in addition to those upon which the investigator is initially focusing.


Assuntos
Algoritmos , Rastreamento de Células/métodos , Aprendizado de Máquina , Neuritos/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Animais , Células Cultivadas , Biologia Computacional/métodos , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos Transgênicos , Neuritos/efeitos dos fármacos , Fosfotransferases/antagonistas & inibidores , Fosfotransferases/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Cultura Primária de Células , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/farmacologia
4.
Endocrinology ; 165(10)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39254333

RESUMO

There has been an alarming trend toward earlier puberty in girls, suggesting the influence of an environmental factor(s). As the reactivation of the reproductive axis during puberty is thought to be mediated by the hypothalamic neuropeptides kisspeptin and gonadotropin-releasing hormone (GnRH), we asked whether an environmental compound might activate the kisspeptin (KISS1R) or GnRH receptor (GnRHR). We used GnRHR or KISS1R-expressing HEK293 cells to screen the Tox21 10K compound library, a compendium of pharmaceuticals and environmental compounds, for GnRHR and KISS1R activation. Agonists were identified using Ca2+ flux and phosphorylated extracellularly regulated kinase (p-ERK) detection assays. Follow-up studies included measurement of genes known to be upregulated upon receptor activation using relevant murine or human cell lines and molecular docking simulation. Musk ambrette was identified as a KISS1R agonist, and treatment with musk ambrette led to increased expression of Gnrh1 in murine and human hypothalamic cells and expansion of GnRH neuronal area in developing zebrafish larvae. Molecular docking demonstrated that musk ambrette interacts with the His309, Gln122, and Gln123 residues of the KISS1R. A group of cholinergic agonists with structures similar to methacholine was identified as GnRHR agonists. When applied to murine gonadotrope cells, these agonists upregulated Fos, Jun, and/or Egr1. Molecular docking revealed a potential interaction between GnRHR and 5 agonists, with Asn305 constituting the most conservative GnRHR binding site. In summary, using a Tox21 10K compound library screen combined with cellular, molecular, and structural biology techniques, we have identified novel environmental agents that may activate the human KISS1R or GnRHR.


Assuntos
Receptores de Kisspeptina-1 , Receptores LHRH , Humanos , Feminino , Animais , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Receptores LHRH/metabolismo , Receptores LHRH/genética , Camundongos , Células HEK293 , Peixe-Zebra , Hormônio Liberador de Gonadotropina/metabolismo , Puberdade/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Simulação de Acoplamento Molecular , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/fisiologia , Kisspeptinas/metabolismo , Kisspeptinas/genética , Poluentes Ambientais/toxicidade , Poluentes Ambientais/farmacologia
5.
Bioorg Med Chem Lett ; 23(16): 4587-90, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23856051

RESUMO

Both pharmacophore models of the human ether-à-go-go-related gene (hERG) channel blockers and phospholipidosis (PLD) inducers contain a hydrophobic moiety and a hydrophilic motif/positively charged center, so it is interesting to investigate the overlap between the ligand chemical spaces of both targets. We have assayed over 4000 non-redundant drug-like compounds for both their hERG inhibitory activity and PLD inducing potential in a quantitative high throughput screening (qHTS) format. Seventy-seven percent of PLD inducing compounds identified from the screening were also found to be hERG channel blockers, and 96.9% of the dually active compounds were positively charged. Among the 48 compounds that induced PLD without inhibiting hERG channel, 24 compounds (50.0%) carried steroidal structures. According to our results, hERG channel blockers and PLD inducers share a large chemical space. In addition, a positively charged hERG channel blocker will most likely induce PLD, while a steroid PLD inducer is less likely a hERG channel blocker.


Assuntos
Lipidoses/induzido quimicamente , Fosfolipídeos/metabolismo , Antipsicóticos/química , Antipsicóticos/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Fosfolipídeos/química , Promazina/química , Promazina/metabolismo , Promazina/farmacologia , Relação Quantitativa Estrutura-Atividade , Esteroides/química
6.
J Cheminform ; 15(1): 39, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004072

RESUMO

High throughput screening (HTS) is widely used in drug discovery and chemical biology to identify and characterize agents having pharmacologic properties often by evaluation of large chemical libraries. Standard HTS data can be simply plotted as an x-y graph usually represented as % activity of a compound tested at a single concentration vs compound ID, whereas quantitative HTS (qHTS) data incorporates a third axis represented by concentration. By virtue of the additional data points arising from the compound titration and the incorporation of logistic fit parameters that define the concentration-response curve, such as EC50 and Hill slope, qHTS data has been challenging to display on a single graph. Here we provide a flexible solution to the rapid plotting of complete qHTS data sets to produce a 3-axis plot we call qHTS Waterfall Plots. The software described here can be generally applied to any 3-axis dataset and is available as both an R package and an R shiny application.

7.
Methods Mol Biol ; 2474: 155-167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294764

RESUMO

Compound activity identification is the primary goal in high throughput screening (HTS) assays. However, assay artifacts including both systematic (e.g., compound autofluorescence) and nonsystematic (e.g., noise) complicate activity interpretation. In addition, other than the traditional potency parameter, half-maximal effect concentration [EC50], additional activity parameters (e.g., point-of-departure [POD] and weighted area-under-the-curve [wAUC]) could be derived from HTS data for activity profiling. A data analysis pipeline has been developed to handle the artifacts, and to provide compound activity characterization with either binary or continuous metrics. This chapter outlines the steps in the pipeline using Tox21 estrogen receptor (ER) ß-lactamase assays, including the formats to identify either agonists or antagonists, as well as the counterscreen assays for identifying artifacts as examples. The steps can be applied to other lower throughput assays with concentration-response data.


Assuntos
Artefatos , Ensaios de Triagem em Larga Escala , Bioensaio
8.
Front Pharmacol ; 13: 899536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847040

RESUMO

Cytochrome P450 (CYP) 3A7 is one of the major xenobiotic metabolizing enzymes in human embryonic, fetal, and newborn liver. CYP3A7 expression has also been observed in a subset of the adult population, including pregnant women, as well as in various cancer patients. The characterization of CYP3A7 is not as extensive as other CYPs, and health authorities have yet to provide guidance towards DDI assessment. To identify potential CYP3A7-specific molecules, we used a P450-Glo CYP3A7 enzyme assay to screen a library of ∼5,000 compounds, including FDA-approved drugs and drug-like molecules, and compared these screening data with that from a P450-Glo CYP3A4 assay. Additionally, a subset of 1,000 randomly selected compounds were tested in a metabolic stability assay. By combining the data from the qHTS P450-Glo and metabolic stability assays, we identified several chemical features important for CYP3A7 selectivity. Halometasone was chosen for further evaluation as a potential CYP3A7-selective inhibitor using molecular docking. From the metabolic stability assay, we identified twenty-two CYP3A7-selective substrates over CYP3A4 in supersome setting. Our data shows that CYP3A7 has ligand promiscuity, much like CYP3A4. Furthermore, we have established a large, high-quality dataset that can be used in predictive modeling for future drug metabolism and interaction studies.

9.
Methods Mol Biol ; 2474: 29-38, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294753

RESUMO

The constitutive androstane receptor (CAR, NR1I3) controls the transcription of numerous hepatic drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both mechanisms require the translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active and spontaneously localized in the nucleus of most immortalized cell lines. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify human CAR modulators through the employment of a double stable cell line. Using this line, we can identify activators, as well as deactivators, of the challenging nuclear receptor, CAR.


Assuntos
Núcleo Celular , Receptores Citoplasmáticos e Nucleares , Bioensaio , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Genes Reporter , Humanos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
10.
Curr Res Toxicol ; 3: 100092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353521

RESUMO

Toxicology in the 21st Century (Tox21) is a federal collaboration employing a high-throughput robotic screening system to test 10,000 environmental chemicals. One of the primary goals of the program is prioritizing toxicity evaluations through in vitro high-throughput screening (HTS) assays for large numbers of chemicals already in commercial use for which little or no toxicity data is available. Within the Tox21 screening program, disruption in nuclear receptor (NR) signaling represents a particular area of interest. Given the role of NR's in modulating a wide range of biological processes, alterations of their activity can have profound biological impacts. Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that has demonstrated importance in bile acid homeostasis, glucose metabolism, lipid homeostasis and hepatic regeneration. In this study, we re-evaluated 24 FXR agonists and antagonists identified through Tox21 using select orthogonal assays. In transient transactivation assays, 7/8 putative agonists and 4/4 putative inactive compounds were confirmed. Likewise, we confirmed 9/12 antagonists tested. Using a mammalian two hybrid approach we demonstrate that both FXR agonists and antagonists facilitate FXRα-coregulator interactions suggesting that differential coregulator recruitment may mediate activation/repression of FXRα mediated transcription. Additionally, we tested the ability of select FXR agonists and antagonists to facilitate hepatic transcription of FXR gene targets Shp and Bsep in a teleost (Medaka) model. Through application of in vitro cell-based assays, in silico modeling and in vivo gene expressions, we demonstrated the molecular complexity of FXR:ligand interactions and confirmed the ability of diverse ligands to modulate FXRα, facilitate differential coregulator recruitment and activate/repress receptor-mediated transcription. Overall, we suggest a multiplicative approach to assessment of nuclear receptor function may facilitate a greater understanding of the biological and mechanistic complexities of nuclear receptor activities and further our ability to interpret broad HTS outcomes.

11.
Assay Drug Dev Technol ; 19(8): 539-549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34662221

RESUMO

The estrogen receptor α (ERα) is a target of intense pharmacological intervention and toxicological biomonitoring. Current methods to directly quantify cellular levels of ERα involve antibody-based assays, which are labor-intensive and of limited throughput. In this study, we generated a post-translational reporter cell line, referred to as MCF7-ERα-HiBiT, by fusing a small pro-luminescent nanoluciferase (NLuc) tag (HiBiT) to the C-terminus of endogenous ERα in MCF7 cells. The tag allows the luminescent detection and quantification of endogenous ERα protein by addition of the complementary NLuc enzyme fragment. This MCF7-ERα-HiBiT cell line was optimized for quantitative high-throughput screening (qHTS) to identify compounds that reduce ERα levels. In addition, the same cell line was optimized for a qHTS cellular thermal shift assay to identify compounds that bind and thermally stabilize ERα. Here, we interrogated the MCF7-ERα-HiBiT assay against the NCATS Pharmacological Collection (NPC) of 2,678 approved drugs and identified compounds that potently reduce and thermally stabilize ERα. Our novel post-translational reporter cell line provides a unique opportunity for profiling large pharmacological and toxicological compound libraries for their effect on ERα levels as well as for assessing direct compound binding to the receptor, thus facilitating mechanistic studies by which compounds exert their biological effects on ERα.


Assuntos
Receptor alfa de Estrogênio , Ensaios de Triagem em Larga Escala , Bioensaio , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Células MCF-7
12.
SLAS Discov ; 26(10): 1355-1364, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34269114

RESUMO

Butyrylcholinesterase (BChE) is a nonspecific cholinesterase enzyme that hydrolyzes choline-based esters. BChE plays a critical role in maintaining normal cholinergic function like acetylcholinesterase (AChE) through hydrolyzing acetylcholine (ACh). Selective BChE inhibition has been regarded as a viable therapeutic approach in Alzheimer's disease. As of now, a limited number of selective BChE inhibitors are available. To identify BChE inhibitors rapidly and efficiently, we have screened 8998 compounds from several annotated libraries against an enzyme-based BChE inhibition assay in a quantitative high-throughput screening (qHTS) format. From the primary screening, we identified a group of 125 compounds that were further confirmed to inhibit BChE activity, including previously reported BChE inhibitors (e.g., bambuterol and rivastigmine) and potential novel BChE inhibitors (e.g., pancuronium bromide and NNC 756), representing diverse structural classes. These BChE inhibitors were also tested for their selectivity by comparing their IC50 values in BChE and AChE inhibition assays. The binding modes of these compounds were further studied using molecular docking analyses to identify the differences between the interactions of these BChE inhibitors within the active sites of AChE and BChE. Our qHTS approach allowed us to establish a robust and reliable process to screen large compound collections for potential BChE inhibitors.


Assuntos
Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Domínio Catalítico/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular/métodos , Relação Estrutura-Atividade , Terbutalina/análogos & derivados , Terbutalina/química
13.
Methods Mol Biol ; 2365: 21-41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34432237

RESUMO

The confirmation of a small molecule binding to a protein target can be challenging when switching from biochemical assays to physiologically relevant cellular models. The cellular thermal shift assay (CETSA) is an approach to validate ligand-protein binding in a cellular environment by examining a protein's melting profile which can shift to a higher or lower temperature when bound by a small molecule. Traditional CETSA uses SDS-PAGE and Western blotting to quantify protein levels, a process that is both time consuming and low-throughput when screening multiple compounds and concentrations. Herein, we outline the reagents and methods to implement split Nano Luciferase (SplitLuc) CETSA, which is a reporter-based target engagement assay designed for high-throughput screening in 384- or 1536-well plate formats.


Assuntos
Bioensaio , Ensaios de Triagem em Larga Escala , Ligantes , Luciferases , Ligação Proteica
14.
SLAS Discov ; 25(3): 253-264, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31662025

RESUMO

Histone deacetylases (HDACs) are epigenetic modulators linked to diseases including cancer and neurodegeneration. Given their therapeutic potential, highly sensitive biochemical and cell-based profiling technologies have been developed to discover small-molecule HDAC inhibitors. Ultimately, the therapeutic action of these inhibitors is dependent on a physical engagement with their intended targets in cellular and tissue environments. Confirming target engagement in the cellular environment is particularly relevant for HDACs since they function as part of cell type-specific multiprotein complexes. Here we implemented two recently developed high-throughput target engagement technologies, NanoBRET and SplitLuc CETSA, to profile 349 compounds in the Epigenetic-Focused collection for HDAC1 binding. We found that the two HDAC1 target engagement assays correlated well with each other and with orthogonal activity-based assays, in particular those carried out in cellular environments rather than with isolated HDAC proteins. The assays detected a majority of the previously described HDAC1 inhibitors in the collection and, importantly, triaged HDAC inhibitors known to target other HDACs.


Assuntos
Ensaios de Triagem em Larga Escala , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/isolamento & purificação , Epigênese Genética/efeitos dos fármacos , Histona Desacetilase 1/genética , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Humanos , Neoplasias/tratamento farmacológico , Ligação Proteica/efeitos dos fármacos
15.
Toxicol In Vitro ; 56: 93-100, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30625376

RESUMO

The inhibition of acetylcholinesterase (AChE) has pharmaceutical applications as well as potential neurotoxic effects. The in vivo metabolites of some chemicals including organophosphorus pesticides can become more potent AChE inhibitors compared to their parental compounds. To account for the effects of biotransformation, we have developed and characterized a high-throughput screening method for identifying AChE inhibitors that become active or more potent following xenobiotic metabolism. In this study, an enzyme-based assay was developed in 1536-well plates using recombinant human AChE combined with human or rat liver microsomes. The AChE activity was measured by two methods with different readouts: colorimetric and fluorescent. The assay exhibited exceptional performance characteristics including large assay signal window, low well-to-well variability and high reproducibility. The performance of the assays with microsomes was characterized by testing a group of known AChE inhibitors including parent compounds and their metabolites. Large potency differences between the parent compounds and the metabolites were observed in the assay with microsome addition. Both assay readouts were required for maximal sensitivity. These results demonstrate that this platform is a promising method to profile large numbers of chemicals that require metabolic activation for inhibiting AChE activity.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Ensaios de Triagem em Larga Escala , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Xenobióticos/toxicidade , Animais , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos
16.
Environ Health Perspect ; 116(3): 284-91, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18335092

RESUMO

BACKGROUND: The propensity of compounds to produce adverse health effects in humans is generally evaluated using animal-based test methods. Such methods can be relatively expensive, low-throughput, and associated with pain suffered by the treated animals. In addition, differences in species biology may confound extrapolation to human health effects. OBJECTIVE: The National Toxicology Program and the National Institutes of Health Chemical Genomics Center are collaborating to identify a battery of cell-based screens to prioritize compounds for further toxicologic evaluation. METHODS: A collection of 1,408 compounds previously tested in one or more traditional toxicologic assays were profiled for cytotoxicity using quantitative high-throughput screening (qHTS) in 13 human and rodent cell types derived from six common targets of xenobiotic toxicity (liver, blood, kidney, nerve, lung, skin). Selected cytotoxicants were further tested to define response kinetics. RESULTS: qHTS of these compounds produced robust and reproducible results, which allowed cross-compound, cross-cell type, and cross-species comparisons. Some compounds were cytotoxic to all cell types at similar concentrations, whereas others exhibited species- or cell type-specific cytotoxicity. Closely related cell types and analogous cell types in human and rodent frequently showed different patterns of cytotoxicity. Some compounds inducing similar levels of cytotoxicity showed distinct time dependence in kinetic studies, consistent with known mechanisms of toxicity. CONCLUSIONS: The generation of high-quality cytotoxicity data on this large library of known compounds using qHTS demonstrates the potential of this methodology to profile a much broader array of assays and compounds, which, in aggregate, may be valuable for prioritizing compounds for further toxicologic evaluation, identifying compounds with particular mechanisms of action, and potentially predicting in vivo biological response.


Assuntos
Testes de Toxicidade/métodos , Xenobióticos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Técnicas In Vitro , Camundongos , Ratos , Reprodutibilidade dos Testes
17.
ACS Sustain Chem Eng ; 6(3): 3233-3241, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32461840

RESUMO

Ratiometric ß-lactamase (BLA) reporters are widely used to study transcriptional responses in a high-throughput screening (HTS) format. Typically, a ratio readout (background/target fluorescence) is used for toxicity assessment and structure-activity modeling efforts from BLA HTS data. This ratio readout may be confounded by channel-specific artifacts. To maximize the utility of BLA HTS data, we analyzed the relationship between individual channels and ratio readouts after fitting 10,000 chemical titration series screened in seven BLA stress-response assays from the Tox21 initiative. Similar to previous observations, we found that activity classifications based on BLA ratio readout alone are confounded by interference patterns for up to 85% (50 % on average) of active chemicals. Most Tox21 analyses adjust for this issue by evaluating target and ratio readout direction. In addition, we found that the potency and efficacy estimates derived from the ratio readouts may not represent the target channel effects and thus complicates chemical activity comparison. From these analyses we recommend a simpler approach using a direct evaluation of the target and background channels as well as the respective noise levels when using BLA data for toxicity assessment. This approach eliminates the channel interference issues and allows for straightforward chemical assessment and comparisons.

18.
Biotechnol J ; 12(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28294544

RESUMO

Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of acetylcholine, a neurotransmitter associated with muscle movement, cognition, and other neurobiological processes. Inhibition of AChE activity can serve as a therapeutic mechanism, but also cause adverse health effects and neurotoxicity. In order to efficiently identify AChE inhibitors from large compound libraries, homogenous cell-based assays in high-throughput screening platforms are needed. In this study, a fluorescent method using Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine) and the Ellman absorbance method were both developed in a homogenous format using a human neuroblastoma cell line (SH-SY5Y). An enzyme-based assay using Amplex Red was also optimized and used to confirm the potential inhibitors. These three assays were used to screen 1368 compounds, which included a library of pharmacologically active compounds (LOPAC) and 88 additional compounds from the Tox21 program, at multiple concentrations in a quantitative high-throughput screening (qHTS) format. All three assays exhibited exceptional performance characteristics including assay signal quality, precision, and reproducibility. A group of inhibitors were identified from this study, including known (e.g. physostigmine and neostigmine bromide) and potential novel AChE inhibitors (e.g. chelerythrine chloride and cilostazol). These results demonstrate that this platform is a promising means to profile large numbers of chemicals that inhibit AChE activity.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/análise , Técnicas Citológicas/métodos , Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Linhagem Celular Tumoral , Humanos , Reprodutibilidade dos Testes
19.
Toxicology ; 391: 34-41, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28789971

RESUMO

Toxicologists and chemical regulators depend on accurate and effective methods to evaluate and predict the toxicity of thousands of current and future compounds. Robust high-throughput screening (HTS) experiments have the potential to efficiently test large numbers of chemical compounds for effects on biological pathways. HTS assays can be utilized to examine chemical toxicity across multiple mechanisms of action, experimental models, concentrations, and lengths of exposure. Many agricultural, industrial, and pharmaceutical chemicals classified as harmful to human and environmental health exert their effects through the mechanism of mitochondrial toxicity. Mitochondrial toxicants are compounds that cause a decrease in the number of mitochondria within a cell, and/or decrease the ability of mitochondria to perform normal functions including producing adenosine triphosphate (ATP) and maintaining cellular homeostasis. Mitochondrial dysfunction can lead to apoptosis, necrosis, altered metabolism, muscle weakness, neurodegeneration, decreased organ function, and eventually disease or death of the whole organism. The development of HTS techniques to identify mitochondrial toxicants will provide extensive databases with essential connections between mechanistic mitochondrial toxicity and chemical structure. Computational and bioinformatics approaches can be used to evaluate compound databases for specific chemical structures associated with toxicity, with the goal of developing quantitative structure-activity relationship (QSAR) models and mitochondrial toxicophores. Ultimately these predictive models will facilitate the identification of mitochondrial liabilities in consumer products, industrial compounds, pharmaceuticals and environmental hazards.


Assuntos
Ecotoxicologia/métodos , Poluentes Ambientais/toxicidade , Ensaios de Triagem em Larga Escala , Mitocôndrias/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Células Cultivadas , Biologia Computacional , Bases de Dados de Proteínas , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Medição de Risco , Relação Estrutura-Atividade , Fatores de Tempo
20.
J Biomol Screen ; 21(9): 942-55, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27112173

RESUMO

Synthetic lethal screens are used to discover new combination treatments for cancer. In traditional high-throughput synthetic lethal screens, compounds are tested at a single dose, and hit selection is based on threshold activity values from the variance of the efficacy of the compounds tested. The limitation of the single-dose screening for synthetic lethal screens is that it does not allow for the robust detection of differential activities from compound collections with a broad range of potencies and efficacies. There is therefore a need to develop screening approaches that enable the identification of compounds with synthetic lethal effects based on changes in both potency and efficacy. Here we describe the implementation of a dose response-based synthetic lethal screen to find drugs that enhance or mitigate the cytotoxic effect of an immunotoxin protein (HA22). We developed a data analysis framework for the selection of compounds with enhancing or mitigating cytotoxic activities based on the use of dose-response parameters. The data analysis framework includes an ensemble ranking approach that allows the use of multiple dose-response parameters in a nonparametric fashion. Quantitative high-throughput screening (HTS) enables the identification of compounds with synthetic lethal activity not identified by single-dose HTS.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Neoplasias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Mutações Sintéticas Letais/genética , Toxinas Bacterianas/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Exotoxinas/antagonistas & inibidores , Humanos , Neoplasias/genética , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA