Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 200(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555704

RESUMO

The type VI secretion system (T6SS) inhibits the growth of neighboring bacterial cells through a contact-mediated mechanism. Here, we describe a detailed characterization of the protein localization dynamics in the Pseudomonas aeruginosa T6SS. It has been proposed that the type VI secretion process is driven by a conformational-change-induced contraction of the T6SS sheath. However, although the contraction of an optically resolvable TssBC sheath and the subsequent localization of ClpV are observed in Vibrio cholerae, coordinated assembly and disassembly of TssB and ClpV are observed without TssB contraction in P. aeruginosa These dynamics are inconsistent with the proposed contraction sheath model. Motivated by the phenomenon of dynamic instability, we propose a new model in which ATP hydrolysis, rather than conformational change, generates the force for secretion.IMPORTANCE The type VI secretion system (T6SS) is widely conserved among Gram-negative bacteria and is a central determinant of bacterial fitness in polymicrobial communities. The secretion system targets bacteria and secretes effectors that inhibit the growth of neighboring cells, using a contact-mediated-delivery system. Despite significant homology to the previously characterized Vibrio cholerae T6SS, our analysis reveals that effector secretion is driven by a distinct force generation mechanism in Pseudomonas aeruginosa The presence of two distinct force generation mechanisms in T6SS represents an example of the evolutionary diversification of force generation mechanisms.


Assuntos
Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/metabolismo , Evolução Biológica , Transporte Biológico , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo VI/genética , Vibrio cholerae/genética
2.
Clin Exp Metastasis ; 35(1-2): 77-86, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29582202

RESUMO

Imaging is broadly used in biomedical research, but signal variation complicates automated analysis. Using the Pulmonary Metastasis Assay (PuMA) to study metastatic colonization by the metastasis suppressor KISS1, we cultured GFP-expressing melanoma cells in living mouse lung ex vivo for 3 weeks. Epifluorescence images of cells were used to measure growth, creating large datasets which were time consuming and challenging to quantify manually due to scattering of light from outside the focal plane. To address these challenges, we developed an automated workflow to standardize the measurement of disseminated cancer cell growth by applying statistical quality control to remove unanalyzable images followed and a filtering algorithm to quantify only in-focus cells. Using this tool, we demonstrate that expression of the metastasis suppressor KISS1 does not suppress growth of melanoma cells in the PuMA, in contrast to the robust suppression of lung metastasis observed in vivo. This result may suggest that a factor required for metastasis suppression is present in vivo but absent in the PuMA, or that KISS1 suppresses lung metastasis at a step in the metastatic cascade not tested by the PuMA. Together, these data provide a new tool for quantification of metastasis assays and further insight into the mechanism of KISS1 mediated metastasis suppression in the lung.


Assuntos
Kisspeptinas/fisiologia , Neoplasias Pulmonares/secundário , Animais , Feminino , Melanoma Experimental/patologia , Camundongos Nus , Microscopia de Fluorescência , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA