Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(25): 7623-7628, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38860722

RESUMO

Hexagonal boron nitride (h-BN) hosts pure single-photon emitters that have shown evidence of optically detected electronic spin dynamics. However, the electrical and chemical structures of these optically addressable spins are unknown, and the nature of their spin-optical interactions remains mysterious. Here, we use time-domain optical and microwave experiments to characterize a single emitter in h-BN exhibiting room temperature optically detected magnetic resonance. Using dynamical simulations, we constrain and quantify transition rates in the model, and we design optical control protocols that optimize the signal-to-noise ratio for spin readout. This constitutes a necessary step toward quantum control of spin states in h-BN.

2.
Nano Lett ; 24(18): 5656-5661, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657275

RESUMO

A physical platform for nodes of the envisioned quantum Internet is long-sought. Here we propose such a platform, along with a conceptually simple and experimentally uncomplicated quantum information processing scheme, realized in a system of multiple crystal-phase quantum dots. We introduce novel location qubits, describe a method to construct a universal set of all-optical quantum gates, and simulate their performance in realistic structures, including decoherence sources. Our results show that location qubits are robust against the main decoherence mechanisms, and realistic single-qubit gate fidelities exceed 99.9%. Our scheme paves a clear way toward constructing multiqubit solid-state quantum registers with a built-in photonic interface─a key building block of the forthcoming quantum Internet.

3.
Rep Prog Phys ; 87(9)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39059436

RESUMO

Decoherence-free subspaces and subsystems (DFS) preserve quantum information by encoding it into symmetry-protected states unaffected by decoherence. An inherent DFS of a given experimental system may not exist; however, through the use of dynamical decoupling (DD), one can induce symmetries that support DFSs. Here, we provide the first experimental demonstration of DD-generated decoherence-free subsystem logical qubits. Utilizing IBM Quantum superconducting processors, we investigate two and three-qubit DFS codes comprising up to six and seven noninteracting logical qubits, respectively. Through a combination of DD and error detection, we show that DFS logical qubits can achieve up to a 23% improvement in state preservation fidelity over physical qubits subject to DD alone. This constitutes a beyond-breakeven fidelity improvement for DFS-encoded qubits. Our results showcase the potential utility of DFS codes as a pathway toward enhanced computational accuracy via logical encoding on quantum processors.

4.
Entropy (Basel) ; 26(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920458

RESUMO

The interference of fermionic particles, specifically molecules comprising a small number of fermions, in a Mach-Zehnder interferometer is being investigated under the influence of both classical and non-classical external controls. The aim is to identify control strategies that can elucidate the relationship between the interference pattern and the characteristics of internal fermion-fermion interactions.

5.
Entropy (Basel) ; 26(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38667890

RESUMO

The theoretical connections between quantum trajectories and quantum dwell times, previously explored in the context of 1D time-independent stationary scattering applications, are here generalized for multidimensional time-dependent wavepacket applications for particles with spin 1/2. In addition to dwell times, trajectory-based dwell time distributions are also developed, and compared with previous distributions based on the dwell time operator and the flux-flux correlation function. Dwell time distributions are of interest, in part because they may be of experimental relevance. In addition to standard unipolar quantum trajectories, bipolar quantum trajectories are also considered, and found to relate more directly to the dwell time (and other quantum time) quantities of greatest relevance for scattering applications. Detailed calculations are performed for a benchmark 3D spin-1/2 particle application, considered previously in the context of computing quantum arrival times.

6.
Entropy (Basel) ; 25(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37238545

RESUMO

Quantum control of lossy systems is known to be achieved by adiabatic passage via an approximate dark state relatively immune to loss, such as the emblematic example of stimulated Raman adiabatic passage (STIRAP) featuring a lossy excited state. By systematic optimal control study, via the Pontryagin maximum principle, we design alternative more efficient routes that, for a given admissible loss, feature an optimal transfer with respect to the cost defined as (i) the pulse energy (energy minimization) or (ii) the pulse duration (time minimization). The optimal controls feature remarkably simple sequences in the respective cases: (i) operating far from a dark state, of π-pulse type in the limit of low admissible loss, or (ii) close to the dark state with a counterintuitive pulse configuration sandwiched by sharp intuitive sequences, referred to as the intuitive/counterintuitive/intuitive (ICI) sequence. In the case of time optimization, the resulting stimulated Raman exact passage (STIREP) outperforms STIRAP in term of speed, accuracy, and robustness for low admissible loss.

7.
Entropy (Basel) ; 25(2)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36832579

RESUMO

We investigate the problem of population transfer in a two-states system driven by an external electromagnetic field featuring a few cycles, until the extreme limit of two or one cycle. Taking the physical constraint of zero-area total field into account, we determine strategies leading to ultrahigh-fidelity population transfer despite the failure of the rotating wave approximation. We specifically implement adiabatic passage based on adiabatic Floquet theory for a number of cycles as low as 2.5 cycles, finding and making the dynamics follow an adiabatic trajectory connecting the initial and targeted states. Nonadiabatic strategies with shaped or chirped pulses, extending the π-pulse regime to two- or single-cycle pulses, are also derived.

8.
Entropy (Basel) ; 26(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38248162

RESUMO

This article is devoted to developing an approach for manipulating the von Neumann entropy S(ρ(t)) of an open two-qubit system with coherent control and incoherent control inducing time-dependent decoherence rates. The following goals are considered: (a) minimizing or maximizing the final entropy S(ρ(T)); (b) steering S(ρ(T)) to a given target value; (c) steering S(ρ(T)) to a target value and satisfying the pointwise state constraint S(ρ(t))≤S¯ for a given S¯; (d) keeping S(ρ(t)) constant at a given time interval. Under the Markovian dynamics determined by a Gorini-Kossakowski-Sudarshan-Lindblad type master equation, which contains coherent and incoherent controls, one- and two-step gradient projection methods and genetic algorithm have been adapted, taking into account the specifics of the objective functionals. The corresponding numerical results are provided and discussed.

9.
Philos Trans A Math Phys Eng Sci ; 380(2239): 20210272, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36335939

RESUMO

A pedagogical introduction to counterdiabatic formalism of shortcuts to adiabaticity is given so that readers can access some of the more specialized articles in the rest of this theme issue without any barriers. A guide to references is given so that this article also serves as a mini-review. This article is part of the theme issue 'Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives'.

10.
Philos Trans A Math Phys Eng Sci ; 380(2239): 20210273, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36335942

RESUMO

Quantum brachistochrone (QB) is a quantum analogue of classical brachistochrone (shortest path). It is a solution to the following problem: How can we perform a desired quantum operation (or obtain a desired final quantum state) most quickly, by a time-dependent Hamiltonian subject to given constraints? Finding QB is a fundamental problem in quantum mechanics in its own right. Moreover, it will be useful in the study of quantum information and quantum engineering, such as quantum speed limits and implementations of quantum computers. A general framework for finding QBs, called QB formalism, has been developed. It is based on Pontryagin's maximum principle. We review the basics of the QB formalism, give simple examples, and briefly discuss some related studies. This article is part of the theme issue 'Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives'.

11.
Philos Trans A Math Phys Eng Sci ; 380(2239): 20210280, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36335948

RESUMO

We present a method to transport Bose-Einstein condensates (BECs) in anharmonic traps and in the presence of atom-atom interactions in short times without residual excitation. Using a combination of a variational approach and inverse engineering methods, we derive a set of Ermakov-like equations that take into account the coupling between the centre of mass motion and the breathing mode. By an appropriate inverse engineering strategy of those equations, we then design the trap trajectory to achieve the desired boundary conditions. Numerical examples for cubic or quartic anharmonicities are provided for fast and high-fidelity transport of BECs. Potential applications are atom interferometry and quantum information processing. This article is part of the theme issue 'Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives'.

12.
Philos Trans A Math Phys Eng Sci ; 380(2239): 20210283, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36335940

RESUMO

We use optimal control theory to obtain shortcuts to adiabaticity which maximize population transfer in a three-level stimulated Raman adiabatic passage system, for a given finite duration of the process and a specified dissipation rate at the intermediate state. We fix the sum of the intensities of the pump and Stokes pulses and use the mixing angle of the fields as the sole control variable. We determine the optimal variation of this angle and reveal the role of the singular arc in the optimal trajectory, in order to minimize the effect of dissipation. This article is part of the theme issue 'Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives'.

13.
Entropy (Basel) ; 24(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37420478

RESUMO

Driving a quantum system across quantum critical points leads to non-adiabatic excitations in the system. This in turn may adversely affect the functioning of a quantum machine which uses a quantum critical substance as its working medium. Here we propose a bath-engineered quantum engine (BEQE), in which we use the Kibble-Zurek mechanism and critical scaling laws to formulate a protocol for enhancing the performance of finite-time quantum engines operating close to quantum phase transitions. In the case of free fermionic systems, BEQE enables finite-time engines to outperform engines operating in the presence of shortcuts to adiabaticity, and even infinite-time engines under suitable conditions, thus showing the remarkable advantages offered by this technique. Open questions remain regarding the use of BEQE based on non-integrable models.

14.
Entropy (Basel) ; 25(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36673159

RESUMO

The development of quantum technologies present important challenges such as the need for fast and precise protocols for implementing quantum operations. Shortcuts to adiabaticity (STAs) are a powerful tool for achieving these goals, as they enable us to perform an exactly adiabatic evolution in finite time. In this paper, we present a shortcut to adiabaticity for the control of an optomechanical cavity with two moving mirrors. Given reference trajectories for the mirrors, we find analytical expressions that give us effective trajectories which implement an STA for the quantum field inside the cavity. We then solve these equations numerically for different reference protocols, such as expansions, contractions and rigid motions, thus confirming the successful implementation of the STA and finding some general features of these effective trajectories.

15.
Entropy (Basel) ; 24(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36554148

RESUMO

We propose the combination of digital quantum simulation and variational quantum algorithms as an alternative approach to numerical methods for solving quantum control problems. As a hybrid quantum-classical framework, it provides an efficient simulation of quantum dynamics compared to classical algorithms, exploiting the previous achievements in digital quantum simulation. We analyze the trainability and the performance of such algorithms based on our preliminary works. We show that specific quantum control problems, e.g., finding the switching time for bang-bang control or the digital quantum annealing schedule, can already be studied in the noisy intermediate-scale quantum era. We foresee that these algorithms will contribute even more to quantum control of high precision if the hardware for experimental implementation is developed to the next level.

16.
Proc Natl Acad Sci U S A ; 115(52): 13216-13221, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530651

RESUMO

The control and manipulation of quantum systems without excitation are challenging, due to the complexities in fully modeling such systems accurately and the difficulties in controlling these inherently fragile systems experimentally. For example, while protocols to decompress Bose-Einstein condensates (BECs) faster than the adiabatic timescale (without excitation or loss) have been well developed theoretically, experimental implementations of these protocols have yet to reach speeds faster than the adiabatic timescale. In this work, we experimentally demonstrate an alternative approach based on a machine-learning algorithm which makes progress toward this goal. The algorithm is given control of the coupled decompression and transport of a metastable helium condensate, with its performance determined after each experimental iteration by measuring the excitations of the resultant BEC. After each iteration the algorithm adjusts its internal model of the system to create an improved control output for the next iteration. Given sufficient control over the decompression, the algorithm converges to a solution that sets the current speed record in relation to the adiabatic timescale, beating out other experimental realizations based on theoretical approaches. This method presents a feasible approach for implementing fast-state preparations or transformations in other quantum systems, without requiring a solution to a theoretical model of the system. Implications for fundamental physics and cooling are discussed.

17.
Entropy (Basel) ; 23(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356438

RESUMO

We study the robustness of different sweep protocols for accelerated adiabaticity following in the presence of static errors and of dissipative and dephasing phenomena. While in the noise-free case, counterdiabatic driving is, by definition, insensitive to the form of the original sweep function, this property may be lost when the quantum system is open. We indeed observe that, according to the decay and dephasing channels investigated here, the performance of the system becomes highly dependent on the sweep function. Our findings are relevant for the experimental implementation of robust shortcuts-to-adiabaticity techniques for the control of quantum systems.

18.
Entropy (Basel) ; 23(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429967

RESUMO

Only very recently, rescaling time has been recognized as a way to achieve adiabatic dynamics in fast processes. The advantage of time-rescaling over other shortcuts to adiabaticity is that it does not depend on the eigenspectrum and eigenstates of the Hamiltonian. However, time-rescaling requires that the original dynamics are adiabatic, and in the rescaled time frame, the Hamiltonian exhibits non-trivial time-dependence. In this work, we show how time-rescaling can be applied to Dirac dynamics, and we show that all time-dependence can be absorbed into the effective potentials through a judiciously chosen unitary transformation. This is demonstrated for two experimentally relevant scenarios, namely for ion traps and adiabatic creation of Weyl points.

19.
Proc Natl Acad Sci U S A ; 114(9): 2149-2153, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28196889

RESUMO

Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

20.
Entropy (Basel) ; 21(8)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-33267523

RESUMO

Coherence is associated with transient quantum states; in contrast, equilibrium thermal quantum systems have no coherence. We investigate the quantum control task of generating maximum coherence from an initial thermal state employing an external field. A completely controllable Hamiltonian is assumed allowing the generation of all possible unitary transformations. Optimizing the unitary control to achieve maximum coherence leads to a micro-canonical energy distribution on the diagonal energy representation. We demonstrate such a control scenario starting from a given Hamiltonian applying an external field, reaching the control target. Such an optimization task is found to be trap-less. By constraining the amount of energy invested by the control, maximum coherence leads to a canonical energy population distribution. When the optimization procedure constrains the final energy too tightly, local suboptimal traps are found. The global optimum is obtained when a small Lagrange multiplier is employed to constrain the final energy. Finally, we explore the task of generating coherences restricted to be close to the diagonal of the density matrix in the energy representation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA