Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Biol Chem ; 299(10): 105249, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37714464

RESUMO

Cytochrome bc1 catalyzes electron transfer from quinol (QH2) to cytochrome c in reactions coupled to proton translocation across the energy-conserving membrane. Energetic efficiency of the catalytic cycle is secured by a two-electron and two-proton bifurcation reaction leading to oxidation of QH2 and reduction of the Rieske cluster and heme bL. The proton paths associated with this reaction remain elusive. Here, we used site-directed mutagenesis and quantum mechanical calculations to analyze the contribution of protonable side chains located at the heme bL side of the QH2 oxidation site in Rhodobacter capsulatus cytochrome bc1. We observe that the proton path is effectively switched off when H276 and E295 are simultaneously mutated to the nonprotonable residues in the H276F/E295V double mutant. The two single mutants, H276F or E295V, are less efficient but still transfer protons at functionally relevant rates. Natural selection exposed two single mutations, N279S and M154T, that restored the functional proton transfers in H276F/E295V. Quantum mechanical calculations indicated that H276F/E295V traps the side chain of Y147 in a position distant from QH2, whereas either N279S or M154T induce local changes releasing Y147 from that position. This shortens the distance between the protonable groups of Y147 and D278 and/or increases mobility of the Y147 side chain, which makes Y147 efficient in transferring protons from QH2 toward D278 in H276F/E295V. Overall, our study identified an extended hydrogen bonding network, build up by E295, H276, D278, and Y147, involved in efficient proton removal from QH2 at the heme bL side of QH2 oxidation site.

2.
J Comput Chem ; 45(20): 1727-1736, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38595085

RESUMO

This study compares results of four relativistic pseudopotential basis sets, which differ mainly by their size: double-zeta introduced by Hay and Wadt from Los Alamos National Laboratory (LANL2DZ), triple-zeta based on Stuttgart energy-consistent scalar-relativistic pseudopotential (SDD3), its extension with 2fg polarization functions, and combination of Stuttgart pseudopotentials with quintuple-zeta cc-pV5Z base (SDD5). Hydrides of transition metals from Cr to Zn group are chosen as reference molecules. The coupled cluster method (CCSD(T)) is used for evaluation of selected molecular characteristics. Interatomic distances, dissociation energies, vibration modes, and anharmonicity constants are determined and compared with available experimental data. As expected, the accuracy of basis depends mainly on its size. However, only moderate modification of SDD3 basis set significantly improves its accuracy, which becomes comparable to the largest basis set. Nevertheless, the time consumption is significantly lower.

3.
J Mol Recognit ; 37(3): e3076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366770

RESUMO

Tetramethrin (TMT) is a commonly used insecticide and has a carcinogenic and neurodegenerative effect on humans. The binding mechanism and toxicological implications of TMT to human serum albumin (HSA) were examined in this study employing a combination of biophysical and computational methods indicating moderate binding affinity and potential hepato and renal toxicity. Fluorescence quenching experiments showed that TMT binds to HSA with a moderate affinity, and the binding process was spontaneous and predominantly enthalpy-driven. Circular dichroism spectroscopy revealed that TMT binding did not induce any significant conformational changes in HSA, resulting in no changes in its alpha-helix content. The binding site and modalities of TMT interactions with HSA as computed by molecular docking and molecular dynamics simulations revealed that it binds to Sudlow site II of HSA via hydrophobic interactions through its dimethylcyclopropane carboxylate methyl propanyl group. The structural dynamics of TMT induce proper fit into the binding site creating increased and stabilizing interactions. Additionally, molecular mechanics-Poisson Boltzmann surface area calculations also indicated that non-polar and van der Waals were found to be the major contributors to the high binding free energy of the complex. Quantum mechanics (QM) revealed the conformational energies of the binding confirmation and the degree of deviation from the global minimum energy conformation of TMT. The results of this study provide a comprehensive understanding of the binding mechanism of TMT with HSA, which is important for evaluating the toxicity of this insecticide in humans.


Assuntos
Inseticidas , Piretrinas , Humanos , Ligação Proteica , Simulação de Acoplamento Molecular , Inseticidas/toxicidade , Espectrometria de Fluorescência , Albumina Sérica Humana/química , Sítios de Ligação , Termodinâmica , Dicroísmo Circular
4.
Magn Reson Chem ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981694

RESUMO

Hydrogen bonding is a crucial feature of biomolecules, but its characterization in glycans dissolved in aqueous solutions is challenging due to rapid hydrogen exchange between hydroxyl groups and H2O. In principle, the scalar (J) coupling constant can reveal the relative orientation of the atoms in the molecule. In contrast to J-coupling through H-bonds reported in proteins and nucleic acids, research on J-coupling through H-bonds in glycans dissolved in water is lacking. Here, we use sucrose as a model system for H-bonding studies; its structure, which consists of glucose (Glc) and fructose (Frc), is well-studied, and it is readily available. We apply the in-phase, antiphase-HSQC-TOCSY and quantify previously unreported through H-bond J-values for Frc-OH1-Glc-OH2 in H2O. While earlier reports of Brown and Levy indicate this H-bond as having only a single direction, our reported findings indicate the potential presence of two involving these same atoms, namely, G2OH âž” F1O and F1OH âž” G2O (where F and G stand for Frc and Glc, respectively). The calculated density functional theory J-values for the G2OH âž” F1O agree with the experimental values. Additionally, we detected four other possible H-bonds in sucrose, which require different phi, psi (ϕ, ψ) torsion angles. The ϕ, ψ values are consistent with previous predictions of du Penhoat et al. and Venable et al. Our results will provide new insights into the molecular structure of sucrose and its interactions with proteins.

5.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257364

RESUMO

A reaction in anhydrous toluene between the formally unsaturated fragment [Ln(hfac)3] (Ln3+ = Eu3+, Gd3+ and Er3+; Hhfac = hexafluoroacetylacetone) and [Al(qNO)3] (HqNO = 8-hydroxyquinoline N-oxide), here prepared for the first time from [Al(OtBu)3] and HqNO, affords the dinuclear heterometallic compounds [Ln(hfac)3Al(qNO)3] (Ln3+ = Eu3+, Gd3+ and Er3+) in high yields. The molecular structures of these new compounds revealed a dinuclear species with three phenolic oxygen atoms bridging the two metal atoms. While the europium and gadolinium complexes show the coordination number (CN) 9 for the lanthanide centre, in the complex featuring the smaller erbium ion, only two oxygens bridge the two metal atoms for a resulting CN of 8. The reaction of [Eu(hfac)3] with [Alq3] (Hq = 8-hydroxyquinoline) in the same conditions yields a heterometallic product of composition [Eu(hfac)3Alq3]. A recrystallization attempt from hot heptane in air produced single crystals of two different morphologies and compositions: [Eu2(hfac)6Al2q4(OH)2] and [Eu2(hfac)6(µ-Hq)2]. The latter compound can be directly prepared from [Eu(hfac)3] and Hq at room temperature. Quantum mechanical calculations confirm (i) the higher stability of [Eu(hfac)3Al(qNO)3] vs. the corresponding [Eu(hfac)3Alq3] and (ii) the preference of the Er complexes for the CN 8, justifying the different behaviour in terms of the Lewis acidity of the metal centre.

6.
Mar Drugs ; 21(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37888461

RESUMO

Using the OSMAC (One Strain Many Compounds) approach, the actinobacterium Streptomyces griseorubiginosus, derived from an unidentified cnidarian collected from a reef near Pointe de Bellevue in Réunion Island (France), was subjected to cultivation under diverse conditions. This endeavour yielded the isolation of a repertoire of 23 secondary metabolites (1-23), wherein five compounds were unprecedented as natural products (19-23). Specifically, compounds 19 and 20 showcased novel anthrone backbones, while compound 23 displayed a distinctive tetralone structure. Additionally, compounds 21 and 22 presented an unusual naphtho [2,3-c]furan-4(9H)-one chromophore. Interestingly, the detection of all these novel compounds (19-23) was exclusively achieved when the bacterium was cultured in FA-1 liquid medium supplemented with the epigenetic modifier γ-butyrolactone. The elucidation of the structural features of the newfound compounds was accomplished through a combination of HRESIMS, 1D and 2D NMR spectroscopy, as well as QM-NMR (Quantum Mechanical-Nuclear Magnetic Resonance) methods and by comparison with existing literature. Moreover, the determination of the relative configuration of compound 23 was facilitated by employing the mix-J-DP4 computational approach.


Assuntos
Produtos Biológicos , Policetídeos , Streptomyces , Policetídeos/farmacologia , Espectroscopia de Ressonância Magnética , Streptomyces/metabolismo , Estrutura Molecular
7.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901823

RESUMO

Hydrogen bonds and stacking interactions are pivotal in biological mechanisms, although their proper characterisation within a molecular complex remains a difficult task. We used quantum mechanical calculations to characterise the complex between caffeine and phenyl-ß-D-glucopyranoside, in which several functional groups of the sugar derivative compete with each other to attract caffeine. Calculations at different levels of theory (M06-2X/6-311++G(d,p) and B3LYP-ED=GD3BJ/def2TZVP) agree to predict several structures similar in stability (relative energy) but with different affinity (binding energy). These computational results were experimentally verified by laser infrared spectroscopy, through which the caffeine·phenyl-ß-D-glucopyranoside complex was identified in an isolated environment, produced under supersonic expansion conditions. The experimental observations correlate with the computational results. Caffeine shows intermolecular interaction preferences that combine both hydrogen bonding and stacking interactions. This dual behaviour had already been observed with phenol, and now with phenyl-ß-D-glucopyranoside, it is confirmed and maximised. In fact, the size of the complex's counterparts affects the maximisation of the intermolecular bond strength because of the conformational adaptability given by the stacking interaction. Comparison with the binding of caffeine within the orthosteric site of the A2A adenosine receptor shows that the more strongly bound caffeine·phenyl-ß-D-glucopyranoside conformer mimics the interactions occurring within the receptor.


Assuntos
Cafeína , Glucose , Conformação Molecular , Fenóis , Espectrofotometria Infravermelho , Teoria Quântica , Ligação de Hidrogênio
8.
J Biol Inorg Chem ; 27(1): 65-79, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34714401

RESUMO

The mechanism of action of most approved drugs in use today is based on their binding to specific proteins or DNA. One of the achievements of this research is a new perspective for recognition of binding modes to DNA by monitoring of changes in measured and stoichiometric values of absorbance at 260 nm. UV-Vis and IR spectroscopy, gel electrophoresis and docking study were used for investigation of binding properties of three dinuclear platinum(II) complexes containing different pyridine-based bridging ligands, [{Pt(en)Cl}2(µ-4,4'-bipy)]Cl2·2H2O (Pt1), [{Pt(en)Cl}2(µ-bpa)]Cl2·4H2O (Pt2) and [{Pt(en)Cl}2(µ-bpe)]Cl2·4H2O (Pt3) to DNA (4,4'-bipy, bpa and bpe are 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethane and 1,2-bis(4-pyridyl)ethene, respectively). In contrast to the system with well-known intercalated ligand (EtBr), covalently bound ligand (cis-Pt) and with minor groove binder (Hoechst 33258), which do not have significant differences in measured and stoichiometric values, the most pronounced deviations are recorded for two dinuclear platinum(II) complexes (Pt1 and Pt2), as a consequence of complex binding to the phosphate backbone and bending of DNA helix. The hydrolysis of complexes and changes in DNA conformation were also analysed as phenomena that may have an impact on the changes in absorbance.


Assuntos
Antineoplásicos , Platina , Antineoplásicos/química , DNA/química , Ligantes , Fosfatos , Platina/química
9.
Mar Drugs ; 20(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36355022

RESUMO

NMR data prediction is increasingly important in structure elucidation. The impact of force field selection was assessed, along with geometry and energy cutoffs. Based on the conclusions, we propose a new approach named mix-J-DP4, which provides a remarkable increase in the confidence level of complex stereochemical assignments-100% in our molecular test set-with a very modest increment in computational cost.


Assuntos
Imageamento por Ressonância Magnética , Conformação Molecular , Espectroscopia de Ressonância Magnética
10.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557858

RESUMO

The identification of novel molecular systems with high fluorescence and significant non-linear optical (NLO) properties is a hot topic in the continuous search for new emissive probes. Here, the photobehavior of three two-arm bis[(dimethylamino)styryl]benzene derivatives, where the central benzene was replaced by pyridine, furan, or thiophene, was studied by stationary and time-resolved spectroscopic techniques with ns and fs resolution. The three molecules under investigation all showed positive fluorosolvatochromism, due to intramolecular charge-transfer (ICT) dynamics from the electron-donor dimethylamino groups, and significant fluorescence quantum yields, because of the population of a planar and emissive ICT state stabilized by intramolecular hydrogen-bond-like interactions. The NLO properties (hyperpolarizability coefficient and TPA cross-section) were also measured. The obtained results allowed the role of the central heteroaromatic ring to be disclosed. In particular, the introduction of the thiophene ring guarantees high fluorescent quantum yields irrespective of the polarity of the medium, and the largest hyperpolarizability coefficient because of the increased conjugation. An important and structure-dependent involvement of the triplet state was also highlighted, with the intersystem crossing being competitive with fluorescence, especially in the thiophene derivative, where the triplet was found to significantly sensitize molecular oxygen even in polar environment, leading to possible applications in photodynamic therapy.


Assuntos
Derivados de Benzeno , Oxigênio , Estrutura Molecular , Benzeno , Tiofenos
11.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502280

RESUMO

Estrogen receptor alpha (ERα) is a ligand-dependent transcriptional factor in the nuclear receptor superfamily. Many structures of ERα bound with agonists and antagonists have been determined. However, the dynamic binding patterns of agonists and antagonists in the binding site of ERα remains unclear. Therefore, we performed molecular docking, molecular dynamics (MD) simulations, and quantum mechanical calculations to elucidate agonist and antagonist dynamic binding patterns in ERα. 17ß-estradiol (E2) and 4-hydroxytamoxifen (OHT) were docked in the ligand binding pockets of the agonist and antagonist bound ERα. The best complex conformations from molecular docking were subjected to 100 nanosecond MD simulations. Hierarchical clustering was conducted to group the structures in the trajectory from MD simulations. The representative structure from each cluster was selected to calculate the binding interaction energy value for elucidation of the dynamic binding patterns of agonists and antagonists in the binding site of ERα. The binding interaction energy analysis revealed that OHT binds ERα more tightly in the antagonist conformer, while E2 prefers the agonist conformer. The results may help identify ERα antagonists as drug candidates and facilitate risk assessment of chemicals through ER-mediated responses.


Assuntos
Estradiol/metabolismo , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Tamoxifeno/análogos & derivados , Estradiol/química , Receptor alfa de Estrogênio/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Teoria Quântica , Tamoxifeno/química , Tamoxifeno/metabolismo
12.
Molecules ; 26(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34443377

RESUMO

We here investigate the Electronic Circular Dichroism (ECD) Spectra of two representative Guanine-rich sequences folded in a Quadruple helix (GQ), by using a recently developed fragment diabatisation based excitonic model (FrDEx). FrDEx can include charge transfer (CT) excited states and consider the effect of the surrounding monomers on the local excitations (LEs). When applied to different structures generated by molecular dynamics simulations on a fragment of the human telomeric sequence (Tel21/22), FrDEx provides spectra fully consistent with the experimental one and in good agreement with that provided by quantum mechanical (QM) method used for its parametrization, i.e., TD-M05-2X. We show that the ECD spectrum is moderately sensitive to the conformation adopted by the bases of the loops and more significantly to the thermal fluctuations of the Guanine tetrads. In particular, we show how changes in the overlap of the tetrads modulate the intensity of the ECD signal. We illustrate how this correlates with changes in the character of the excitonic states at the bottom of the La and Lb bands, with larger LE and CT involvement of bases that are more closely stacked. As an additional test, we utilised FrDEx to compute the ECD spectrum of the monomeric and dimeric forms of a GQ forming sequence T30695 (5'TGGGTGGGTGGGTGGG3'), i.e., a system containing up to 24 Guanine bases, and demonstrated the satisfactory reproduction of the experimental and QM reference results. This study provides new insights on the effects modulating the ECD spectra of GQs and, more generally, further validates FrDEx as an effective tool to predict and assign the spectra of closely stacked multichromophore systems.


Assuntos
Dicroísmo Circular , DNA/química , Elétrons , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Dimerização , Espectroscopia de Ressonância Magnética , Temperatura
13.
Angew Chem Int Ed Engl ; 60(11): 6029-6035, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33245574

RESUMO

The inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by a class of six aromatic poly-hydroxylated molecules, namely mono- and dimethyl-substituted catechols, was investigated on the basis of the inhibitory efficiency of the catechol scaffold. The aim was to probe the key step of a mechanism proposed for the inhibition of SPU by catechol, namely the sulfanyl radical attack on the aromatic ring, as well as to obtain critical information on the effect of substituents of the catechol aromatic ring on the inhibition efficacy of its derivatives. The crystal structures of all six SPU-inhibitors complexes, determined at high resolution, as well as kinetic data obtained on JBU and theoretical studies of the reaction mechanism using quantum mechanical calculations, revealed the occurrence of an irreversible inactivation of urease by means of a radical-based autocatalytic multistep mechanism, and indicate that, among all tested catechols, the mono-substituted 3-methyl-catechol is the most efficient inhibitor for urease.


Assuntos
Catecóis/farmacologia , Teoria da Densidade Funcional , Inibidores Enzimáticos/farmacologia , Compostos de Sulfidrila/farmacologia , Urease/antagonistas & inibidores , Catecóis/química , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Modelos Moleculares , Estrutura Molecular , Sporosarcina/enzimologia , Compostos de Sulfidrila/química , Urease/metabolismo
14.
Bioorg Chem ; 103: 104223, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32891002

RESUMO

Seven new cembrane-type diterpenes, lobophytolins C-I (3-9), and one new prenylated-guiane-type diterpene, lobophytolin J (10), along with six known related ones (1, 2, 11-14), have been isolated from the soft coral Lobophytum sp. collected off the Xisha Island in the South China Sea. Their structures were elucidated by extensive spectroscopic analysis and quantum mechanical (QM)-NMR methods. The absolute configuration of lobophytolin H (8) was determined by the application of the modified Mosher's method and chemical transformation. Lobophytolin D (4) exhibited promising cytotoxicities in in vitro bioassays against HT-29, Capan-1, A549, and SNU-398 human cancer cell lines with IC50 values of 4.52, 6.62, 5.17, and 6.15 µM, respectively.


Assuntos
Antozoários/química , Antineoplásicos/farmacologia , Diterpenos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Diterpenos/química , Diterpenos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estereoisomerismo
15.
Int J Mol Sci ; 21(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973096

RESUMO

[6]-Gingerol from ginger has received considerable attention as a potential cancer therapeutic agent because of its chemopreventive and chemotherapeutic effects, as well as its safety. In the current study, we examined [6]-gingerol as a natural scavenger of nine ultimate chemical carcinogens to which we are frequently exposed: glycidamide, styrene oxide, aflatoxin B1 exo-8,9-epoxide, ß-propiolactone, ethylene oxide, propylene oxide, 2-cyanoethylene oxide, chloroethylene oxide, and vinyl carbamate epoxide. To evaluate [6]-gingerol efficacy, we expanded our research with the examination of glutathione-the strongest natural scavenger in human cells. The corresponding activation free energies were calculated using Hartree-Fock method with three flexible basis sets and two implicit solvation models. According to our results, [6]-gingerol proves to be an extremely effective scavenger of chemical carcinogens of the epoxy type. On the other hand, with the exception of aflatoxin B1 exo-8,9-epoxide, glutathione represents a relatively poor scavenger, whose efficacy could be augmented by [6]-gingerol. Moreover, our quantum mechanical study of the alkylation reactions of chemical carcinogens with [6]-gingerol and glutathione provide valuable insights in the reaction mechanisms and the geometries of the corresponding transition states. Therefore, we strongly believe that our research forms a solid basis for further computational, experimental and clinical studies of anticarcinogenic properties of [6]-gingerol as well as for the development of novel chemoprophylactic dietary supplements. Finally, the obtained results also point to the applicability of quantum chemical methods to studies of alkylation reactions related to chemical carcinogenesis.


Assuntos
Anticarcinógenos/química , Anticarcinógenos/farmacologia , Carcinógenos/química , Carcinógenos/farmacologia , Catecóis/química , Catecóis/farmacologia , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Aflatoxina B1 , Alquilação , Linhagem Celular , Quimioprevenção , Compostos de Epóxi/farmacologia , Óxido de Etileno/análogos & derivados , Zingiber officinale/química , Humanos , Propiolactona , Uretana/análogos & derivados
16.
J Chem Inf Model ; 59(6): 2545-2559, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31194543

RESUMO

Machine learning enables computers to address problems by learning from data. Deep learning is a type of machine learning that uses a hierarchical recombination of features to extract pertinent information and then learn the patterns represented in the data. Over the last eight years, its abilities have increasingly been applied to a wide variety of chemical challenges, from improving computational chemistry to drug and materials design and even synthesis planning. This review aims to explain the concepts of deep learning to chemists from any background and follows this with an overview of the diverse applications demonstrated in the literature. We hope that this will empower the broader chemical community to engage with this burgeoning field and foster the growing movement of deep learning accelerated chemistry.


Assuntos
Quimioinformática/métodos , Aprendizado Profundo , Fenômenos Químicos , Técnicas de Química Sintética/métodos , Desenho de Fármacos , Descoberta de Drogas/métodos , Humanos , Redes Neurais de Computação , Relação Quantitativa Estrutura-Atividade
17.
Proc Natl Acad Sci U S A ; 113(14): 3735-9, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001855

RESUMO

It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

18.
Molecules ; 24(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212669

RESUMO

The effect of isotopic substitution on near-infrared (NIR) spectra has not been studied in detail. With an exception of few major bands, it is difficult to follow the spectral changes due to complexity of NIR spectra. Recent progress in anharmonic quantum mechanical calculations allows for accurate reconstruction of NIR spectra. Taking this opportunity, we carried out a systematic study of NIR spectra of six isotopomers of ethanol (CX3CX2OX; X = H, D). Besides, we calculated the theoretical spectra of two other isotopomers (CH3CD2OD and CD3CH2OD) for which the experimental spectra are not available. The anharmonic calculations were based on generalized vibrational second-order perturbation theory (GVPT2) at DFT and MP2 levels with several basis sets. We compared the accuracy and efficiency of various computational methods. It appears that the best results were obtained with B2PLYP-GD3BJ/def2-TZVP//CPCM approach. Our simulations included the first and second overtones, as well as binary and ternary combinations bands. This way, we reliably reproduced even minor bands in the spectra of diluted samples (0.1 M in CCl4). On this basis, the effect of isotopic substitution on NIR spectra of ethanol was accurately reproduced and comprehensively explained.


Assuntos
Etanol/química , Estrutura Molecular , Espectroscopia de Luz Próxima ao Infravermelho
19.
Chemistry ; 24(4): 848-854, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28925514

RESUMO

An unusual germole-to-silole transformation is described. As key intermediates hetero-fulvenes are formed which rearrange to more stable bicyclic carbene analogues. The so-formed germylenes undergo a reductive elimination yielding elemental germanium and siloles. In contrast, the analogous silylenes are stable at ambient conditions and were identified by MS spectrometry and NMR spectroscopy supported by the results of quantum mechanical calculations. These bicyclic silylenes are stable derivatives of the global minimum of the C4 Si2 H6 potential energy surface.

20.
J Comput Chem ; 38(23): 1991-1999, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28558151

RESUMO

An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H2 , CO2 , C2 H4 , CH4 , N2 , O2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA