Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33003203

RESUMO

Quorum sensing interference (QSI), the disruption and manipulation of quorum sensing (QS) in the dynamic control of bacteria populations could be widely applied in synthetic biology to realize dynamic metabolic control and develop potential clinical therapies. Conventionally, limited QSI molecules (QSIMs) were developed based on molecular structures or for specific QS receptors, which are in short supply for various interferences and manipulations of QS systems. In this study, we developed QSIdb (http://qsidb.lbci.net/), a specialized repository of 633 reported QSIMs and 73 073 expanded QSIMs including both QS agonists and antagonists. We have collected all reported QSIMs in literatures focused on the modifications of N-acyl homoserine lactones, natural QSIMs and synthetic QS analogues. Moreover, we developed a pipeline with SMILES-based similarity assessment algorithms and docking-based validations to mine potential QSIMs from existing 138 805 608 compounds in the PubChem database. In addition, we proposed a new measure, pocketedit, for assessing the similarities of active protein pockets or QSIMs crosstalk, and obtained 273 possible potential broad-spectrum QSIMs. We provided user-friendly browsing and searching facilities for easy data retrieval and comparison. QSIdb could assist the scientific community in understanding QS-related therapeutics, manipulating QS-based genetic circuits in metabolic engineering, developing potential broad-spectrum QSIMs and expanding new ligands for other receptors.


Assuntos
Bactérias/química , Bases de Dados de Compostos Químicos , Percepção de Quorum , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Bactérias/metabolismo
2.
mSystems ; : e0071224, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990088

RESUMO

Multidrug-resistant Staphylococcus aureus is one of the most clinically important pathogens in the world, with infections leading to high rates of morbidity and mortality in both humans and animals. The ability of S. aureus to form biofilms protects cells from antibiotics and promotes the transfer of antibiotic resistance genes; therefore, new strategies aimed at inhibiting biofilm growth are urgently needed. Probiotic species, including Bacillus subtilis, are gaining interest as potential therapies against S. aureus for their ability to reduce S. aureus colonization and virulence. Here, we search for strains and microbially derived compounds with strong antibiofilm activity against multidrug-resistant S. aureus by isolating and screening Bacillus strains from a variety of agricultural environments. From a total of 1,123 environmental isolates, we identify a single strain B. subtilis 6D1, with a potent ability to inhibit biofilm growth, disassemble mature biofilm, and improve antibiotic sensitivity of S. aureus biofilms through an Agr quorum sensing interference mechanism. Biochemical and molecular networking analysis of an active organic fraction revealed multiple surfactin isoforms, and an uncharacterized peptide was driving this antibiofilm activity. Compared with commercial high-performance liquid chromatography grade surfactin obtained from B. subtilis, we show these B. subtilis 6D1 peptides are significantly better at inhibiting biofilm formation in all four S. aureus Agr backgrounds and preventing S. aureus-induced cytotoxicity when applied to HT29 human intestinal cells. Our study illustrates the potential of exploring microbial strain diversity to discover novel antibiofilm agents that may help combat multidrug-resistant S. aureus infections and enhance antibiotic efficacy in clinical and veterinary settings. IMPORTANCE: The formation of biofilms by multidrug-resistant bacterial pathogens, such as Staphylococcus aureus, increases these microorganisms' virulence and decreases the efficacy of common antibiotic regimens. Probiotics possess a variety of strain-specific strategies to reduce biofilm formation in competing organisms; however, the mechanisms and compounds responsible for these phenomena often go uncharacterized. In this study, we identified a mixture of small probiotic-derived peptides capable of Agr quorum sensing interference as one of the mechanisms driving antibiofilm activity against S. aureus. This collection of peptides also improved antibiotic killing and protected human gut epithelial cells from S. aureus-induced toxicity by stimulating an adaptive cytokine response. We conclude that purposeful strain screening and selection efforts can be used to identify unique probiotic strains that possess specially desired mechanisms of action. This information can be used to further improve our understanding of the ways in which probiotic and probiotic-derived compounds can be applied to prevent bacterial infections or improve bacterial sensitivity to antibiotics in clinical and agricultural settings.

3.
Gut Microbes ; 15(2): 2252780, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37680117

RESUMO

Bacteria synchronize social behaviors via a cell-cell communication and interaction mechanism termed as quorum sensing (QS). QS has been extensively studied in monocultures and proved to be intensively involved in bacterial virulence and infection. Despite the role QS plays in pathogens during laboratory engineered infections has been proved, the potential functions of QS related to pathogenesis in context of microbial consortia remain poorly understood. In this review, we summarize the basic molecular mechanisms of QS, primarily focusing on pathogenic microbes driving gastrointestinal (GI) infections. We further discuss how GI pathogens disequilibrate the homeostasis of the indigenous microbial consortia, rebuild a realm dominated by pathogens, and interact with host under worsening infectious conditions via pathogen-biased QS signaling. Additionally, we present recent applications and main challenges of manipulating QS network in microbial consortia with the goal of better understanding GI bacterial sociality and facilitating novel therapies targeting bacterial infections.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Humanos , Percepção de Quorum , Bactérias/genética , Homeostase
4.
Appl Biochem Biotechnol ; 194(2): 671-693, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34449042

RESUMO

The growth of respiratory diseases, as witnessed through the SARS and COVID-19 outbreaks, and antimicrobial-resistance together pose a serious threat to humanity. One reason for antimicrobial resistance is formation of bacterial biofilms. In this study the sulphated polysaccharides from green algae Chlamydomonas reinhardtii (Cr-SPs) is tested for its antibacterial and antibiofilm potential against Klebsiella pneumoniae and Serratia marcescens. Agar cup assay clearly indicated the antibacterial potential of Cr-SPs. Minimum inhibitory concentration (MIC50) of Cr-SPs against Klebsiella pneumoniae was found to be 850 µg/ml, and it is 800 µg/ml in Serratia marcescens. Time-kill and colony-forming ability assays suggest the concentration-dependent bactericidal potential of Cr-SPs. Cr-SPs showed 74-100% decrease in biofilm formation in a concentration-dependent manner by modifying the cell surface hydrophobic properties of these bacteria. Cr-SPs have also distorted preformed-biofilms by their ability to interact and destroy the extra polymeric substance and eDNA of the matured biofilm. Scanning electron microscopy analysis showed that Cr-SPs effectively altered the morphology of these bacterial cells and distorted the bacterial biofilms. Furthermore reduced protease, urease and prodigiosin pigment production suggest that Cr-SPs interferes the quorum sensing mechanism in these bacteria. The current study paves way towards developing Cr-SPs as a control strategy for treatment of respiratory tract infections.


Assuntos
Biofilmes/efeitos dos fármacos , Polissacarídeos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , COVID-19/virologia , Clorófitas/química , Humanos , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/patogenicidade , Testes de Sensibilidade Microbiana , Polissacarídeos/química , Infecções Respiratórias/microbiologia , SARS-CoV-2/efeitos dos fármacos , Serratia marcescens/crescimento & desenvolvimento , Serratia marcescens/patogenicidade , Tratamento Farmacológico da COVID-19
5.
Annu Rev Phytopathol ; 59: 153-190, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-33951403

RESUMO

In the battle between bacteria and plants, bacteria often use a population density-dependent regulatory system known as quorum sensing (QS) to coordinate virulence gene expression. In response, plants use innate and induced defense mechanisms that include low-molecular-weight compounds, some of which serve as antivirulence agents by interfering with the QS machinery. The best-characterized QS system is driven by the autoinducer N-acyl-homoserine lactone (AHL), which is produced by AHL synthases (LuxI homologs) and perceived by response regulators (LuxR homologs). Several plant compounds have been shown to directly inhibit LuxI or LuxR. Gaining atomic-level insight into their mode of action and how they interfere with QS enzymes supports the identification and design of novel QS inhibitors.Such information can be gained by combining experimental work with molecular modeling and docking simulations. The summary of these findings shows that plant-derived compounds act as interkingdom cues and that these allomones specifically target bacterial communication systems.


Assuntos
Proteínas de Bactérias , Percepção de Quorum , Acil-Butirolactonas , Bactérias , Doenças das Plantas
6.
Trends Microbiol ; 26(4): 313-328, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29132819

RESUMO

The development of novel therapies to control diseases caused by antibiotic-resistant pathogens is one of the major challenges we are currently facing. Many important plant, animal, and human pathogens regulate virulence by quorum sensing, bacterial cell-to-cell communication with small signal molecules. Consequently, a significant research effort is being undertaken to identify and use quorum-sensing-interfering agents in order to control diseases caused by these pathogens. In this review, an overview of our current knowledge of quorum-sensing systems of Gram-negative model pathogens is presented as well as the link with virulence of these pathogens, and recent advances and challenges in the development of quorum-sensing-interfering therapies are discussed.


Assuntos
Bactérias/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bactérias/patogenicidade , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Plantas , Pseudomonas/efeitos dos fármacos , Pseudomonas/metabolismo , Pseudomonas/patogenicidade , Percepção de Quorum/fisiologia , Vibrio/efeitos dos fármacos , Vibrio/metabolismo , Vibrio/patogenicidade , Virulência/efeitos dos fármacos , Fatores de Virulência , Xanthomonas/efeitos dos fármacos , Xanthomonas/metabolismo , Xanthomonas/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA