RESUMO
PURPOSE: Electron-based ultra-high dose rate radiation therapy (UHDR-RT), also known as Flash-RT, has shown the ability to improve the therapeutic index in comparison to conventional radiotherapy (CONV-RT) through increased sparing of normal tissue. However, the extremely high dose rates in UHDR-RT have raised the need for accurate real-time dosimetry tools. This work aims to demonstrate the potential of the emerging technology of Ionized Radiation Acoustic Imaging (iRAI) through simulation studies and investigate its characteristics as a promising relative in vivo dosimetric tool for UHDR-RT. METHODS: The detection of induced acoustic waves following a single UHDR pulse of a modified 6 MeV 21EX Varian Clinac in a uniform porcine gelatin phantom that is brain-tissue equivalent was simulated for an ideal ultrasound transducer. The full 3D dose distributions in the phantom for a 1 × 1 cm2 field were simulated using EGSnrc (BEAMnrc∖DOSXYZnrc) Monte Carlo (MC) codes. The relative dosimetry simulations were verified with dose experimental measurements using Gafchromic films. The spatial dose distribution was converted into an initial pressure source spatial distribution using the medium-dependent dose-pressure relation. The MATLAB-based toolbox k-Wave was then used to model the propagation of acoustic waves through the phantom and perform time-reversal (TR)-based imaging reconstruction. The effect of the various linear accelerator (linac) operating parameters, including linac pulse duration and pulse repetition rate (frequency), were investigated as well. RESULTS: The MC dose simulation results agreed with the film measurement results, specifically at the central beam region up to 80% dose within approximately 5% relative error for the central profile region and a local relative error of <6% for percentage dose depth. IRAI-based FWHM of the radiation beam was within approximately 3 mm relative to the MC-simulated beam FWHM at the beam entrance. The real-time pressure signal change agreed with the dose changes proving the capability of the iRAI for predicting the beam position. IRAI was tested through 3D simulations of its response to be based on the temporal changes in the linac operating parameters on a dose per pulse basis as expected theoretically from the pressure-dose proportionality. The pressure signal amplitude obtained through 2D simulations was proportional to the dose per pulse. The instantaneous pressure signal amplitude decreases as the linac pulse duration increases, as predicted from the pressure wave generation equations, such that the shorter the linac pulse the higher the signal and the better the temporal (spatial) resolutions of iRAI. The effect of the longer linac pulse duration on the spatial resolution of the 3D constructed iRAI images was corrected for linac pulse deconvolution. This correction has improved the passing rate of the 1%/1 mm gamma test criteria, between the pressure-constructed and dosimetric beam characteristics, to as high as 98%. CONCLUSIONS: A full simulation workflow was developed for testing the effectiveness of iRAI as a promising relative dosimetry tool for UHDR-RT radiation therapy. IRAI has shown the advantage of 3D dose mapping through the dose signal linearity and, hence, has the potential to be a useful dosimeter at depth dose measurement and beam localization and, hence, potentially for in vivo dosimetry in UHDR-RT.
Assuntos
Aceleradores de Partículas , Radiometria , Acústica , Animais , Método de Monte Carlo , Imagens de Fantasmas , Radiação Ionizante , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , SuínosRESUMO
PURPOSE: FLASH radiotherapy (FLASH-RT) is a novel irradiation modality with ultra-high dose rates (>40 Gy/s) that have shown tremendous promise for its ability to enhance normal tissue sparing while maintaining comparable tumor cell eradication toconventional radiotherapy (CONV-RT). Due to its extremely high dose rates, clinical translation of FLASH-RT is hampered by risky delivery and current limitations in dosimetric devices, which cannot accurately measure, in real time, dose at deeper tissue. This work aims to investigate ionizing radiation acoustic imaging (iRAI) as a promising image-guidance modality for real-time deep tissue dose measurements during FLASH-RT. The underlying hypothesis is that iRAI can enable mapping of dose deposition with respect to surrounding tissue with a single linear accelerator (linac) pulse precision in real time. In this work, the relationship between iRAI signal response and deposited dose was investigated as well as the feasibility of using a proof-of-concept dual-modality imaging system of ultrasound and iRAI for treatment beam co-localization with respect to underlying anatomy. METHODS: Two experimental setups were used to study the feasibility of iRAI for FLASH-RT using 6 MeV electrons from a modified Varian Clinac. First, experiments were conducted using a single element focused transducer to take a series of point measurements in a gelatin phantom, which was compared with independent dose measurements using GAFchromic film. Secondly, an ultrasound and iRAI dual-modality imaging system utilizing a phased array transducer was used to take coregistered two-dimensional (2D) iRAI signal amplitude images as well as ultrasound B-mode images, to map the dose deposition with respect to surrounding anatomy in an ex vivo rabbit liver model with a single linac pulse precision. RESULTS: Using a single element transducer, iRAI measurements showed a highly linear relationship between the iRAI signal amplitude and the linac dose per pulse (r2 = 0.9998) with a repeatability precision of 1% and a dose resolution error <2.5% in a homogenous phantom when compared to GAFchromic film dose measurements. These phantom results were used to develop a calibration curve between the iRAI signal response and the delivered dose per pulse. Subsequently, a normalized depth dose curve was generated that agreed with film measurements with an RMSE of 0.0243, using correction factors to account for deviations in measurement conditions with respect to calibration. Experiments on the ex-vivo rabbit liver model demonstrated that a 2D iRAI image could be generated successfully from a single linac pulse, which was fused with the B-mode ultrasound image to provide information about the beam position with respect to surrounding anatomy in real time. CONCLUSION: This work demonstrates the potential of using iRAI for real-time deep tissue dosimetry in FLASH-RT. Our results show that iRAI signals are linear with dose and can accurately map the delivered radiation dose with respect to soft tissue anatomy. With its ability to measure dose for individual linac pulses at any location within surrounding soft tissue while identifying where that dose is being delivered anatomically in real time, iRAI can be an indispensable tool to enable safe and efficient clinical translation of FLASH-RT.
Assuntos
Aceleradores de Partículas , Radiometria , Acústica , Animais , Imagens de Fantasmas , Coelhos , Radiação Ionizante , Dosagem RadioterapêuticaRESUMO
Acoustic waves are induced via the thermoacoustic effect in objects exposed to a pulsed beam of ionizing radiation. This phenomenon has interesting potential applications in both radiotherapy dosimetry and treatment guidance as well as low-dose radiological imaging. After initial work in the field in the 1980s and early 1990s, little research was done until 2013 when interest was rejuvenated, spurred on by technological advances in ultrasound transducers and the increasing complexity of radiotherapy delivery systems. Since then, many studies have been conducted and published applying ionizing radiation-induced acoustic principles into three primary research areas: Linear accelerator photon beam dosimetry, proton therapy range verification, and radiological imaging. This review article introduces the theoretical background behind ionizing radiation-induced acoustic waves, summarizes recent advances in the field, and provides an outlook on how the detection of ionizing radiation-induced acoustic waves can be used for relative and in vivo dosimetry in photon therapy, localization of the Bragg peak in proton therapy, and as a low-dose medical imaging modality. Future prospects and challenges for the clinical implementation of these techniques are discussed.