Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 544
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Eur Radiol ; 34(4): 2394-2404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37735276

RESUMO

OBJECTIVE: To characterize the use and impact of radiation dose reduction techniques in actual practice for routine abdomen CT. METHODS: We retrospectively analyzed consecutive routine abdomen CT scans in adults from a large dose registry, contributed by 95 hospitals and imaging facilities. Grouping exams into deciles by, first, patient size, and second, size-adjusted dose length product (DLP), we summarized dose and technical parameters and estimated which parameters contributed most to between-protocols dose variation. Lastly, we modeled the total population dose if all protocols with mean size-adjusted DLP above 433 or 645 mGy-cm were reduced to these thresholds. RESULTS: A total of 748,846 CTs were performed using 1033 unique protocols. When sorted by patient size, patients with larger abdominal diameters had increased dose and effective mAs (milliampere seconds), even after adjusting for patient size. When sorted by size-adjusted dose, patients in the highest versus the lowest decile in size-adjusted DLP received 6.4 times the average dose (1680 vs 265 mGy-cm) even though diameter was no different (312 vs 309 mm). Effective mAs was 2.1-fold higher, unadjusted CTDIvol 2.9-fold, and phase 2.5-fold for patients in the highest versus lowest size-adjusted DLP decile. There was virtually no change in kV (kilovolt). Automatic exposure control was widely used to modulate mAs, whereas kV modulation was rare. Phase was the strongest driver of between-protocols variation. Broad adoption of optimized protocols could result in total population dose reductions of 18.6-40%. CONCLUSION: There are large variations in radiation doses for routine abdomen CT unrelated to patient size. Modification of kV and single-phase scanning could result in substantial dose reduction. CLINICAL RELEVANCE: Radiation dose-optimization techniques for routine abdomen CT are routinely under-utilized leading to higher doses than needed. Greater modification of technical parameters and number of phases could result in substantial reduction in radiation exposure to patients. KEY POINTS: • Based on an analysis of 748,846 routine abdomen CT scans in adults, radiation doses varied tremendously across patients of the same size and optimization techniques were routinely under-utilized. • The difference in observed dose was due to variation in technical parameters and phase count. Automatic exposure control was commonly used to modify effective mAs, whereas kV was rarely adjusted for patient size. Routine abdomen CT should be performed using a single phase, yet multi-phase was common. • kV modulation by patient size and restriction to a single phase for routine abdomen indications could result in substantial reduction in radiation doses using well-established dose optimization approaches.


Assuntos
Exposição à Radiação , Tomografia Computadorizada por Raios X , Adulto , Humanos , Doses de Radiação , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Abdome
2.
Eur Radiol ; 34(3): 1605-1613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37646805

RESUMO

OBJECTIVE: Quantify the relationship between CT acquisition parameters and radiation dose, how often parameters are adjusted in real-world practice, and their degree of contribution to real-world dose distribution. Identify discrepancies between parameters that are impactful in theory and impactful in practice. METHODS: This study analyses 1.3 million consecutive adult routine abdomen exams performed between November 2015 and Jan 2021 included in the University of California, San Francisco International CT Dose Registry of 155 institutions. We calculated geometric standard deviation (gSD) for five parameters (kV, mAs, spiral pitch, number of phases, scan length) to assess variation in practice. A Gaussian mixed regression model was performed to predict the radiation dose-length product (DLP) using the parameters. Three conceptualizations of "impact" were computed for each parameter. To reflect the theoretical impact, we predict the increase in DLP per 10% (and 15%) increase in the parameter. To reflect the real-world practical impact, we predict the increase in DLP per gSD increase in the parameter. RESULTS: Among studied examinations, mAs, number of phases, and scan length were frequently manipulated (gSD 1.52-1.70); kV was rarely manipulated (gSD 1.07). Theoretically, kV is the most impactful parameter (29% increase in DLP per 10% increase in kV, versus 5-9% increase for other parameters). In real-world practice, kV is less impactful; for each gSD increase in kV, the DLP increases by 20%, versus 22-69% for other parameters. CONCLUSION: Despite the potential impact of kV on radiation dose, this parameter is rarely manipulated in common practice and this potential remains untapped. CLINICAL RELEVANCE STATEMENT: CT beam energy (kV) modulation has the potential to strongly reduce radiation over-dosage to the patient, theoretically more so than similar degrees of modulation in other CT acquisition parameters. Despite this, beam energy modulation rarely occurs in practice, leaving its potential untapped. KEY POINTS: • The relationship between CT acquisition parameter selection and radiation dose roughly coincided with established theoretical understanding. • CT acquisition parameters differ from each other in frequency and magnitude of manipulation, with beam energy (kV) being rarely manipulated. • Beam energy (kV) has the potential to substantially impact radiation dose, but because it is rarely manipulated, it is the least impactful CT acquisition parameter affecting radiation dose in practice.


Assuntos
Tomografia Computadorizada por Raios X , Adulto , Humanos , Doses de Radiação
3.
Eur Radiol ; 34(3): 1659-1666, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37672054

RESUMO

OBJECTIVE: To report the results of a dose survey conducted across 31 provinces in mainland China from 2017 to 2018 and to analyse the dose level to determine the national diagnostic reference levels (DRLs) for paediatric CT procedures. METHODS: At least ten patients for each age group (0- < 1, 1- < 5, 5- < 10, 10- < 15 years) and each procedure (head, chest and abdomen) for each CT scanner were selected from four to eight hospitals in each province. The dose information (CTDIvol and DLP) was collected from the HIS or RIS-PACS systems. The median values in each CT scanner were considered the representative dose values for the paediatric patients in CT scanning. The national DRLs were estimated based on the 75th percentile distribution of the median values. RESULTS: A total of 24,395 patients and 319 CT scanners were investigated across 262 hospitals. For paediatric CT scanning in 4 different age groups, the median (P50) and the 75th percentile (P75) of CTDIvol and DLP for each scanning procedure were calculated and reported. National DRLs were then proposed for each procedure and age group. CONCLUSION: The dose level of CT scanning for children in mainland China was reported for the first time. The DRLs for paediatric CT in the present study are similar to those in some Asian countries but higher than those in European countries. CLINICAL RELEVANCE STATEMENT: The paediatric CT is an extensively used tool in diagnosing paediatric disease; however, children are more sensitive to radiation. Establishing the diagnostic reference level of paediatric CT examination is necessary to reduce the dose of CT in children and promote the optimisation of medical exposure. KEY POINTS: • The DRLs for 3 paediatric CT procedures (head, chest and abdomen) and 4 age groups (0- < 1, 1- < 5, 5- < 10, 10- < 15 years) were proposed in mainland China first time. • The examination parameter and dose for children need to be further optimised in China, especially to lower the tube voltage in paediatric CT.


Assuntos
Tórax , Tomografia Computadorizada por Raios X , Criança , Humanos , Adolescente , Doses de Radiação , Valores de Referência , Tomografia Computadorizada por Raios X/métodos , China/epidemiologia
4.
Eur Radiol ; 34(3): 1614-1623, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37650972

RESUMO

OBJECTIVE: This study aimed to evaluate the image quality and lesion conspicuity of the deep learning image reconstruction (DLIR) algorithm compared with standard image reconstruction algorithms on abdominal enhanced computed tomography (CT) scanning with a wide range of body mass indexes (BMIs). METHODS: A total of 112 participants who underwent contrast-enhanced abdominal CT scans were divided into three groups according to BMIs: the 80-kVp group (BMI ≤ 23.9 kg/m2), 100-kVp group (BMI 24-28.9 kg/m2), and 120-kVp group (BMI ≥ 29 kg/m2). All images were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction-V of 50% level (IR), and DLIR at low, medium, and high levels (DL, DM, and DH, respectively). Subjective noise, artifact, overall image quality, and low- and high-contrast hepatic lesion conspicuity were all graded on a 5-point scale. The CT attenuation value (in HU), image noise, and contrast-to-noise ratio (CNR) were quantified and compared. RESULTS: DM and DH improved the qualitative and quantitative parameters compared with FBP and IR for all three BMI groups. DH had the lowest image noise and highest CNR value, while DM had the highest subjective overall image quality and low- and high-contrast lesion conspicuity scores for the three BMI groups. Based on the FBP, the improvement in image quality and lesion conspicuity of DM and DH images was greater in the 80-kVp group than in the 100-kVp and 120-kVp groups. CONCLUSION: For all BMIs, DLIR improves both image quality and hepatic lesion conspicuity, of which DM would be the best choice to balance both. CLINICAL RELEVANCE STATEMENT: The study suggests that utilizing DLIR, particularly at the medium level, can significantly enhance image quality and lesion visibility on abdominal CT scans across a wide range of BMIs. KEY POINTS: • DLIR improved the image quality and lesion conspicuity across a wide range of BMIs. • DLIR at medium level had the highest subjective parameters and lesion conspicuity scores among all reconstruction levels. • On the basis of the FBP, the 80-kVp group had improved image quality and lesion conspicuity more than the 100-kVp and 120-kVp groups.


Assuntos
Aprendizado Profundo , Humanos , Índice de Massa Corporal , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Doses de Radiação , Processamento de Imagem Assistida por Computador
5.
Eur Radiol ; 34(2): 1053-1064, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37581663

RESUMO

OBJECTIVES: To explore the performance of low-dose computed tomography (LDCT) with deep learning reconstruction (DLR) for the improvement of image quality and assessment of lung parenchyma. METHODS: Sixty patients underwent chest regular-dose CT (RDCT) followed by LDCT during the same examination. RDCT images were reconstructed with hybrid iterative reconstruction (HIR) and LDCT images were reconstructed with HIR and DLR, both using lung algorithm. Radiation exposure was recorded. Image noise, signal-to-noise ratio, and subjective image quality of normal and abnormal CT features were evaluated and compared using the Kruskal-Wallis test with Bonferroni correction. RESULTS: The effective radiation dose of LDCT was significantly lower than that of RDCT (0.29 ± 0.03 vs 2.05 ± 0.65 mSv, p < 0.001). The mean image noise ± standard deviation was 33.9 ± 4.7, 39.6 ± 4.3, and 31.1 ± 3.2 HU in RDCT, LDCT HIR-Strong, and LDCT DLR-Strong, respectively (p < 0.001). The overall image quality of LDCT DLR-Strong was significantly better than that of LDCT HIR-Strong (p < 0.001) and comparable to that of RDCT (p > 0.05). LDCT DLR-Strong was comparable to RDCT in evaluating solid nodules, increased attenuation, linear opacity, and airway lesions (all p > 0.05). The visualization of subsolid nodules and decreased attenuation was better with DLR than with HIR in LDCT but inferior to RDCT (all p < 0.05). CONCLUSION: LDCT DLR can effectively reduce image noise and improve image quality. LDCT DLR provides good performance for evaluating pulmonary lesions, except for subsolid nodules and decreased lung attenuation, compared to RDCT-HIR. CLINICAL RELEVANCE STATEMENT: The study prospectively evaluated the contribution of DLR applied to chest low-dose CT for image quality improvement and lung parenchyma assessment. DLR can be used to reduce radiation dose and keep image quality for several indications. KEY POINTS: • DLR enables LDCT maintaining image quality even with very low radiation doses. • Chest LDCT with DLR can be used to evaluate lung parenchymal lesions except for subsolid nodules and decreased lung attenuation. • Diagnosis of pulmonary emphysema or subsolid nodules may require higher radiation doses.


Assuntos
Aprendizado Profundo , Humanos , Melhoria de Qualidade , Doses de Radiação , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
6.
Eur Radiol ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296849

RESUMO

BACKGROUND: Pulmonary embolism (PE) is a leading cause of pregnancy-related mortality. CT pulmonary angiogram (CTPA) is the first-line advanced imaging modality for suspected PE in pregnancy at institutes offering low-dose techniques; however, a protocol balancing safety with low dose remains undefined. The wide range of CTPA doses reported in pregnancy suggests a lack of confidence in implementing low-dose techniques in this group. PURPOSE: To define and validate the safety, radiation dose and image quality of a low-dose CTPA protocol optimised for pregnancy. MATERIALS AND METHODS: The OPTICA study is a prospective observational study. Pregnant study participants with suspected PE underwent the same CTPA protocol between May 2018 and February 2022. The primary outcome, CTPA safety, was judged by the reference standard; the 3-month incidence of venous thromboembolism (VTE) in study participants with a negative index CTPA. Secondary outcomes defined radiation dose and image quality. Absorbed breast, maternal effective and fetal doses were estimated by Monte-Carlo simulation on gestation-matched phantoms. Image quality was assessed by signal-to-noise and contrast-to-noise ratios and a Likert score for pulmonary arterial enhancement. RESULTS: A total of 116 CTPAs were performed in 113 pregnant women of which 16 CTPAs were excluded. PE was diagnosed on 1 CTPA and out-ruled in 99. The incidence of recurrent symptomatic VTE was 0.0% (one-sided 95% CI, 2.66%) at follow-up. The mean absorbed breast dose was 2.9 ± 2.1mGy, uterine/fetal dose was 0.1 ± 0.2mGy and maternal effective dose was 1.4 ± 0.9mSv. Signal-to-noise ratio (SNR) was 11.9 ± 3.7. Contrast-to-noise ratio (CNR) was 10.4 ± 3.5. CONCLUSION: The OPTICA CTPA protocol safely excluded PE in pregnant women across all trimesters, with low fetal and maternal radiation. CLINICAL RELEVANCE: OPTICA (Optimised CT Pulmonary Angiography in Pregnancy) is the first prospective study to define the achievable radiation dose, image-quality and safety of a low-dose CT pulmonary angiogram protocol optimised for pregnancy (NCT04179487). It provides the current benchmark for safe and achievable CT pulmonary angiogram doses in the pregnant population. KEY POINTS: • Despite the increased use of CT pulmonary angiogram in pregnancy, an optimised low-dose protocol has not been defined and reported doses in pregnancy continue to vary widely. • The OPTICA (Optimised CT Pulmonary Angiography in Pregnancy) study prospectively defines the achievable dose, image quality and safety of a low-dose CT pulmonary angiogram protocol using widely available technology. • OPTICA provides a benchmark for safe and achievable CT pulmonary angiogram doses in the pregnant population.

7.
Eur Radiol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388717

RESUMO

PURPOSE: Frequent CT scans to quantify lung involvement in cystic lung disease increases radiation exposure. Beam shaping energy filters can optimize imaging properties at lower radiation dosages. The aim of this study is to investigate whether use of SilverBeam filter and deep learning reconstruction algorithm allows for reduced radiation dose chest CT scanning in patients with lymphangioleiomyomatosis (LAM). MATERIAL AND METHODS: In a single-center prospective study, 60 consecutive patients with LAM underwent chest CT at standard and ultra-low radiation doses. Standard dose scan was performed with standard copper filter and ultra-low dose scan was performed with SilverBeam filter. Scans were reconstructed using a soft tissue kernel with deep learning reconstruction (AiCE) technique and using a soft tissue kernel with hybrid iterative reconstruction (AIDR3D). Cyst scores were quantified by semi-automated software. Signal-to-noise ratio (SNR) was calculated for each reconstruction. Data were analyzed by linear correlation, paired t-test, and Bland-Altman plots. RESULTS: Patients averaged 49.4 years and 100% were female with mean BMI 26.6 ± 6.1 kg/m2. Cyst score measured by AiCE reconstruction with SilverBeam filter correlated well with that of AIDR3D reconstruction with standard filter, with a 1.5% difference, and allowed for an 85.5% median radiation dosage reduction (0.33 mSv vs. 2.27 mSv, respectively, p < 0.001). Compared to standard filter with AIDR3D, SNR for SilverBeam AiCE images was slightly lower (3.2 vs. 3.1, respectively, p = 0.005). CONCLUSION: SilverBeam filter with deep learning reconstruction reduces radiation dosage of chest CT, while maintaining accuracy of cyst quantification as well as image quality in cystic lung disease. CLINICAL RELEVANCE STATEMENT: Radiation dosage from chest CT can be significantly reduced without sacrificing image quality by using silver filter in combination with a deep learning reconstructive algorithm. KEY POINTS: • Deep learning reconstruction in chest CT had no significant effect on cyst quantification when compared to conventional hybrid iterative reconstruction. • SilverBeam filter reduced radiation dosage by 85.5% compared to standard dose chest CT. • SilverBeam filter in coordination with deep learning reconstruction maintained image quality and diagnostic accuracy for cyst quantification when compared to standard dose CT with hybrid iterative reconstruction.

8.
AJR Am J Roentgenol ; 222(2): e2330154, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37966036

RESUMO

BACKGROUND. Dual-energy CT pulmonary angiography (CTPA) with energy-integrating detector (EID) technology is limited by the inability to use high-pitch technique. OBJECTIVE. The purpose of this study was to compare the image quality of anatomic images and iodine maps between high-pitch photon-counting detector (PCD) CTPA and dual-energy EID CTPA. METHODS. This prospective study included 117 patients (70 men and 47 women; median age, 65 years) who underwent CTPA to evaluate for pulmonary embolism between March 2022 and November 2022. Fifty-eight patients were randomized to undergo PCD CTPA (pitch, 2.0), and 59 were randomized to undergo EID CTPA (pitch, 0.55). For each examination, 120-kV polychromatic images, 60-keV virtual monogenetic images (VMIs), and iodine maps were reconstructed. One radiologist measured CNR and SNR. Three radiologists independently assessed subjective image quality (on a scale of 1-4, with a score of 1 denoting highest quality). Radiation dose was recorded. RESULTS. SNR and CNR were higher for PCD CTPA than for EID CTPA for polychromatic images and VMIs, for all assessed vessels other than the left upper lobe artery. For example, for PCD CTPA versus EID CTPA, the right lower lobe artery on polychromatic images had an SNR of 34.5 versus 28.0 (p = .003) and a CNR of 29.2 versus 24.4 (p = .001), and on VMIs it had an SNR of 43.2 versus 32.7 (p = .005) and a CNR of 37.4 versus 29.3 (p = .002). For both scanners for readers 1 and 2, the median image quality score for polychromatic images and VMIs was 1, although distributions indicated significantly better scores for PCD CTPA than for EID CTPA for polychromatic images for reader 1 (p = .02) and reader 2 (p = .005) and for VMIs for reader 1 (p = .001) and reader 2 (p = .006). The image quality of anatomic image sets was not different between PCD CTPA and EID CTPA for reader 3 (p > .05). The image quality of iodine maps was not different between PCD CTPA and EID CTPA for any reader (p > .05). For PCD CTPA versus EID CTPA, the CTDIvol was 3.9 versus 4.5 mGy (p = .03), and the DLP was 123.5 mGy × cm versus 157.0 mGy × cm (p < .001). CONCLUSION. High-pitch PCD CTPA provided anatomic images with better subjective and objective image quality versus dual-energy EID CTPA, with lower radiation dose. Iodine maps showed no significant difference in image quality between scanners. CLINICAL IMPACT. CTPA may benefit from the PCD CT technique.


Assuntos
Iodo , Masculino , Humanos , Feminino , Idoso , Estudos Prospectivos , Fótons , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Doses de Radiação
9.
Neuroradiology ; 66(5): 749-759, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498208

RESUMO

PURPOSE: CT perfusion of the brain is a powerful tool in stroke imaging, though the radiation dose is rather high. Several strategies for dose reduction have been proposed, including increasing the intervals between the dynamic scans. We determined the impact of temporal resolution on perfusion metrics, therapy decision, and radiation dose reduction in brain CT perfusion from a large dataset of patients with suspected stroke. METHODS: We retrospectively included 3555 perfusion scans from our clinical routine dataset. All cases were processed using the perfusion software VEOcore with a standard sampling of 1.5 s, as well as simulated reduced temporal resolution of 3.0, 4.5, and 6.0 s by leaving out respective time points. The resulting perfusion maps and calculated volumes of infarct core and mismatch were compared quantitatively. Finally, hypothetical decisions for mechanical thrombectomy following the DEFUSE-3 criteria were compared. RESULTS: The agreement between calculated volumes for core (ICC = 0.99, 0.99, and 0.98) and hypoperfusion (ICC = 0.99, 0.99, and 0.97) was excellent for all temporal sampling schemes. Of the 1226 cases with vascular occlusion, 14 (1%) for 3.0 s sampling, 23 (2%) for 4.5 s sampling, and 63 (5%) for 6.0 s sampling would have been treated differently if the DEFUSE-3 criteria had been applied. Reduction of temporal resolution to 3.0 s, 4.5 s, and 6.0 s reduced the radiation dose by a factor of 2, 3, or 4. CONCLUSION: Reducing the temporal sampling of brain perfusion CT has only a minor impact on image quality and treatment decision, but significantly reduces the radiation dose to that of standard non-contrast CT.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Estudos Retrospectivos , Redução da Medicação , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Tomografia Computadorizada por Raios X/métodos , Isquemia Encefálica/terapia , Perfusão , Imagem de Perfusão/métodos
10.
Pediatr Radiol ; 54(7): 1187-1196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700554

RESUMO

BACKGROUND: Photon-counting computed tomography (PCCT) is a new clinical method that may show better diagnostic quality at lower radiation doses than conventional CT. OBJECTIVE: To investigate the diagnostic quality and radiation dose of paediatric cardiovascular PCCT for diagnosis of congenital heart defects at 70 kV and 90 kV. MATERIALS AND METHODS: This retrospective assessment included clinical non-gated paediatric PCCT examinations for assessment of congenital heart defects. Radiation doses were recorded, and overall and specific diagnostic quality (1-4) were scored by four paediatric radiologists. Agreement, differences, and trends were assessed by percent rater agreement, intraclass correlation, Mann-Whitney tests, and Jonckheere-Terpstra tests. RESULTS: Seventy children with congenital heart defects were examined at 70 kV (n = 35; age 2 days-16 years; 63% boys) or 90 kV (n = 35; age 2 days-17 years; 51% boys). All observers gave a median score of 4 (high diagnostic quality) for both 70 kV and 90 kV, with no difference in median values between tube voltages (all P > 0.06). Agreement for overall scores was 66-94% for 70 kV and 60-77% for 90 kV. Agreement for specific scores was 80-97% for 70 kV and 83-89% for 90 kV. Size-dependent dose estimate was 0.68 mGy (0.25-2.02 mGy) for 70 kV and 1.10 mGy (0.58-2.71 mGy; P < 0.001) for 90 kV. Effective dose was 0.30 mSv (0.15-0.82 mSv) for 70 kV and 0.39 mSv (0.22-1.51 mSv; P = 0.01) for 90 kV. CONCLUSION: Paediatric cardiovascular PCCT yields images for congenital heart defects of high diagnostic quality with low radiation dose at both 70 kV and 90 kV.


Assuntos
Cardiopatias Congênitas , Doses de Radiação , Tomografia Computadorizada por Raios X , Humanos , Cardiopatias Congênitas/diagnóstico por imagem , Feminino , Masculino , Criança , Lactente , Pré-Escolar , Recém-Nascido , Adolescente , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Fótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Skeletal Radiol ; 53(4): 665-673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37804455

RESUMO

OBJECTIVE: To compare the image quality of low-dose CT (LD-CT) with tin filtration of the lumbar spine after metal implants to standard clinical CT, and to evaluate the potential for metal artifact and dose reduction. MATERIALS AND METHODS: CT protocols were optimized in a cadaver torso. Seventy-four prospectively included patients with metallic lumbar implants were scanned with both standard CT (120 kV) and tin-filtered LD-CT (Sn140kV). CT dose parameters and qualitative measures (1 = worst,4 = best) were compared. Quantitative measures included noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and the width and attenuation of the most prominent hypodense metal artifact. Standard CT and LD-CT were assessed for imaging findings. RESULTS: Tin-filtered LD-CT was performed with 60% dose saving compared to standard CT (median effective dose 3.22 mSv (quartile 1-3: 2.73-3.49 mSv) versus 8.02 mSv (6.42-9.27 mSv; p < .001). Image quality of CT and tin-filtered low-dose CT was good with excellent depiction of anatomy, while image noise was lower for CT and artifacts were weaker for tin-filtered LD-CT. Quantitative measures also revealed increased noise for tin-filtered low-dose CT (41.5HU), lower SNR (2) and CNR (0.6) compared to CT (32HU,3.55,1.03, respectively) (all p < .001). However, tin-filtered LD-CT performed superior regarding the width and attenuation of hypodense metal artifacts (2.9 mm and -767.5HU for LD-CT vs. 4.1 mm and -937HU for CT; all p < .001). No difference between methods was observed in detection of imaging findings. CONCLUSION: Tin-filtered LD-CT with 60% dose saving performs comparable to standard CT in detection of pathology and surgery related complications after lumbar spinal instrumentation, and shows superior metal artifact reduction.


Assuntos
Estanho , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Artefatos , Tomografia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
12.
J Appl Clin Med Phys ; 25(1): e14235, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059633

RESUMO

PURPOSE: The purpose of this investigation was to assess the effect of visceral adipose tissue volume (VA) on reader efficacy in diagnosing and characterizing small bowel Crohn's disease using lower exposure CT enterography (CTE). Secondarily, we investigated the effect of lower exposure and VA on reader diagnostic confidence. METHODS: Prospective paired investigation of 256 CTE, 129 with Crohn's disease, were reconstructed at 100% and simulated 50% and 30% exposure. The senior author provided the disease classification for the 129 patients with Crohn's disease. Patient VA was measured, and exams were evaluated by six readers for presence or absence of Crohn's disease and phenotype using a 0-10-point scale. Logistic regression models assessed the effect of VA on sensitivity and specificity. RESULTS: The effect of VA on sensitivity was significantly reduced at 30% exposure (odds radio [OR]: 1.00) compared to 100% exposure (OR: 1.12) (p = 0.048). There was no statistically significant difference among the exposures with respect to the effect of visceral fat on specificity (p = 0.159). The study readers' probability of agreement with the senior author on disease classification was 60%, 56%, and 53% at 100%, 50%, and 30% exposure, respectively (p = 0.004). When detecting low severity Crohn's disease, readers' mean sensitivity was 83%, 75%, and 74% at 100%, 50%, and 30% exposure, respectively (p = 0.002). In low severity disease, sensitivity also tended to increase as visceral fat increased (ORs per 1000 cm3 increase in visceral fat: 1.32, 1.31, and 1.18, p = 0.010, 0.016, and 0.100, at 100%, 50%, and 30% exposure). CONCLUSIONS: While the interaction is complex, VA plays a role in detecting and characterizing small bowel Crohn's disease when exposure is altered, particularly in low severity disease.


Assuntos
Doença de Crohn , Enteropatias , Humanos , Doença de Crohn/diagnóstico por imagem , Gordura Intra-Abdominal/diagnóstico por imagem , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos
13.
J Oral Rehabil ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873694

RESUMO

OBJECTIVE: The aim of this study was to present optimized device-specific low-dose cone-beam computed tomography (CBCT) protocols with sufficient image quality for pre-surgical diagnostics and three-dimensional (3D) modelling of cleft defects. METHODS: Six paediatric skulls were acquired, and an artificial bony cleft was created. A high-resolution CBCT scan acted as a reference standard (Accuitomo 170, Morita, Kyoto, Japan) for comparing eight low-dose protocols of Newtom VGi-evo (QR Verona, Cefla, Verona, Italy), which included Eco and Regular protocols with different field of views (FOVs). Delineation of lamina dura, cementoenamel junction (CEJ), trabecular bone and bony bridge were assessed. A 3D model of the defect was also evaluated. RESULT: The dose area product of low-dose protocols ranged from 31 to 254 mGy*cm2. Despite the dose difference of up to eight times between applied protocols, trabecular bone and CEJ exhibited appropriate image quality in all scans. However, Regular small FOV protocols (5 × 5 and 8 × 5 cm2), for both lamina dura and bony bridge, demonstrated a significant improvement in image quality compared to Eco FOV counterparts. Based on 3D defect analysis, no significant difference existed between low-dose protocols and the reference standard. CONCLUSION: The findings highlight the possibility of achieving a considerable reduction (up to eight times) in the radiation dose using low-dose CBCT protocols while maintaining sufficient image quality for assessing anatomical structures and 3D modelling in cleft cases.

14.
Dentomaxillofac Radiol ; 53(4): 207-221, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38429951

RESUMO

OBJECTIVES: The aim of this systematic review was to verify the accuracy of linear measurements performed on low-dose CBCT protocols for implant planning, in comparison with those performed on standard and high-resolution CBCT protocols. METHODS: The literature search included four databases (Pubmed, Web of Science, Embase, and Scopus). Two reviewers independently screened titles/abstracts and full texts according to eligibility criteria, extracted the data, and examined the methodological quality. Risk of bias assessment was performed using the Quality Assessment Tool For In Vitro Studies. Random-effects meta-analysis was used for pooling measurement error data. RESULTS: The initial search yielded 4684 titles. In total, 13 studies were included in the systematic review, representing a total of 81 samples, while 9 studies were included in the meta-analysis. The risk of bias ranged from medium to low. The main results across the studies indicate a strong consistency in linear measurements performed on low-dose images in relation to the reference methods. The overall pooled planning measurement error from low-dose CBCT protocols was -0.24 mm (95% CI, -0.52 to 0.04) with a high level of heterogeneity, showing a tendency for underestimation of real values. Various studies found no significant differences in measurements across different protocols (eg, voxel sizes, mA settings, or dose levels), regions (incisor, premolar, molar) and types (height vs. width). Some studies, however, noted exceptions in measurements performed on the posterior mandible. CONCLUSION: Low-dose CBCT protocols offer adequate precision and accuracy of linear measurements for implant planning. Nevertheless, diagnostic image quality needs must be taken into consideration when choosing a low-dose CBCT protocol.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Planejamento de Assistência ao Paciente , Doses de Radiação , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Implantação Dentária Endóssea/métodos , Implantes Dentários
15.
Artigo em Inglês | MEDLINE | ID: mdl-38976634

RESUMO

OBJECTIVES: This study aimed to assess the accuracy of ultra-low dose (ULD) cone-beam computed tomography (CBCT) for detection of proximal caries. METHODS: This in vitro study evaluated 104 molar and premolar teeth. The teeth were mounted in dry skulls and underwent CBCT with four protocols of high-resolution (HR), normal (NORM), ULD-HR, and ULD-NORM; 78 CBCT images were scored by three observers for presence and penetration depth of caries twice with a 2-week interval using a 5-point Likert scale. The teeth were then sectioned and observed under a stereomicroscope (gold standard). The four protocols were compared with each other and with the gold standard. The receiver operating characteristic (ROC) curve was drawn, and the area under the curve (AUC) was calculated and compared by the Chi-square test (alpha = 0.05). RESULTS: The interobserver agreement ranged from 0.5233 to 0.6034 for ULD-NORM, 0.5380 to 0.6279 for NORM, 0.5856 to 0.6300 for ULD-HR, and 0.6614 to 0.7707 for HR images. The intra-observer agreement ranged from 0.6027 to 0.8812 for ULD-HR, 0.7083 to 0.7556 for HR, 0.6076 to 0.9452 for ULD-NORM, and 0.7012 to 0.9221 for NORM images. Comparison of AUC revealed no significant difference between NORM and ULD-NORM (P > 0.05), or HR and ULD-HR (P > 0.05). The highest AUC belonged to HR (0.8529) and the lowest to NORM (0.7774). CONCLUSIONS: Considering the significant reduction in radiation dose in ULD CBCT and its acceptable diagnostic accuracy for detection of proximal caries, this protocol may be used for detection of proximal carious lesions and assessment of their depth.

16.
J Radiol Prot ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959875

RESUMO

BACKGROUND: Anecdotal reports are appearing in the scientific literature about cases of brain tumors in interventional physicians who are exposed to ionizing radiation. In response to this alarm, several designs of leaded caps have been made commercially available. However, the results reported on their efficacy are discordant. OBJECTIVE: To synthesise, by means of a systematic review of the literature, the capacity of decreasing radiation levels conferred by radiation attenuating devices (RAD) at the cerebral level of interventional physicians. METHODOLOGY: A systematic review were performed including the following databases: MEDLINE, SCOPUS, EBSCO, Science Direct, Cochrane Controlled Trials Register (CENTRAL), WOS, WHO International Clinical Trials Register, Scielo and Google Scholar, considering original studies that evaluated the efficacy of RAD in experimental or clinical contexts from January 1990 to May 2022. Data selection and extraction were performed in triplicate, with a fourth author resolving discrepancies. RESULTS: Twenty articles were included in the review from a total of 373 studies initially selected from the databases. From these, twelve studies were performed under clinical conditions encompassing 3801 fluoroscopically guided procedures, ten studies were performed under experimental conditions with phantoms, with a total of 88 procedures, four studies were performed using numerical calculations with a total of 63 procedures. The attenuation and effectiveness of provided by the caps analysed in the present review varying from 12.3% to 99.9%, y 4.9% to 91% respectively. CONCLUSION: RAD were found to potentially provide radiation protection, but a high heterogeneity in the shielding afforded was found. This indicates the need for local assessment of cap efficiency according to the practice.

17.
J Xray Sci Technol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38607729

RESUMO

PURPOSE: This study aims to propose and develop a fast, accurate, and robust prediction method of patient-specific organ doses from CT examinations using minimized computational resources. MATERIALS AND METHODS: We randomly selected the image data of 723 patients who underwent thoracic CT examinations. We performed auto-segmentation based on the selected data to generate the regions of interest (ROIs) of thoracic organs using the DeepViewer software. For each patient, radiomics features of the thoracic ROIs were extracted via the Pyradiomics package. The support vector regression (SVR) model was trained based on the radiomics features and reference organ dose obtained by Monte Carlo (MC) simulation. The root mean squared error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R-squared) were evaluated. The robustness was verified by randomly assigning patients to the train and test sets of data and comparing regression metrics of different patient assignments. RESULTS: For the right lung, left lung, lungs, esophagus, heart, and trachea, results showed that the trained SVR model achieved the RMSEs of 2 mGy to 2.8 mGy on the test sets, 1.5 mGy to 2.5 mGy on the train sets. The calculated MAPE ranged from 0.1 to 0.18 on the test sets, and 0.08 to 0.15 on the train sets. The calculated R-squared was 0.75 to 0.89 on test sets. CONCLUSIONS: By combined utilization of the SVR algorithm and thoracic radiomics features, patient-specific thoracic organ doses could be predicted accurately, fast, and robustly in one second even using one single CPU core.

18.
Eur Radiol ; 33(1): 450-460, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35869315

RESUMO

OBJECTIVE: To test the efficacy of self- compared to radiographer-led compression to reduce the average glandular dose without affecting image quality and compliance to follow-up mammography. MATERIALS AND METHODS: Women presenting for mammography for breast cancer follow-up, symptoms, opportunistic screening, or familial risk were asked to participate and, if willing, were randomized to self-compression or radiographer-led compression. Image quality was assessed blindly by two independent radiologists and two radiographers. Pain and discomfort were measured immediately after mammography and their recall was asked when the women participated in the follow-up mammogram, 1 or 2 years later. RESULTS: In total, 495 women (mean age 57 years +/-14) were enrolled, 245 in the self-compression and 250 radiographer-compression arms. Image quality was similar in the two arms (radiologists' judgement p = 0.90; radiographers' judgement p = 0.32). A stronger compression force was reached in the self- than in the radiographer-arm (114.5 vs. 10.25 daN, p < .001), with a 1.7-mm reduction in thickness (p = .14), and almost no impact on dose per exam (1.90 vs. 1.93 mGy, p = .47). Moderate/severe discomfort was reported by 7.8% vs 9.6% (p = .77) and median pain score was 4.0 in both arms (p = .55). Median execution time was 1 min longer with self-compression (10.0 vs. 9.1 min, p < 0.001). No effect on subsequent mammography was detectable (p = 0.47). CONCLUSION: Self-compression achieved stronger compression of the breast, with comparable image quality, but did not substantially reduce glandular dose. The proportion of women who attended follow-up mammography was also similar in the two groups. TRIAL REGISTRATION: clinicaltrials.gov NCT04009278 KEY POINTS: • In mammography, appropriate compression is essential to obtain high image quality and reduce dose. Compression causes pain and discomfort. • Self-compression has been proposed to reach better compression and possibly increase participation in mammography. • In a randomized trial, self-compression reached stronger compression of the breast, with comparable image quality but with no glandular dose reduction or impact on participation in follow-up mammography.


Assuntos
Neoplasias da Mama , Mamografia , Feminino , Humanos , Pessoa de Meia-Idade , Mamografia/métodos , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/complicações , Pressão , Dor/etiologia
19.
Eur Radiol ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870625

RESUMO

OBJECTIVES: The purpose of this study was to determine the influence of dose reduction on a commercially available lung cancer prediction convolutional neuronal network (LCP-CNN). METHODS: CT scans from a cohort provided by the local lung cancer center (n = 218) with confirmed pulmonary malignancies and their corresponding reduced dose simulations (25% and 5% dose) were subjected to the LCP-CNN. The resulting LCP scores (scale 1-10, increasing malignancy risk) and the proportion of correctly classified nodules were compared. The cohort was divided into a low-, medium-, and high-risk group based on the respective LCP scores; shifts between the groups were studied to evaluate the potential impact on nodule management. Two different malignancy risk score thresholds were analyzed: a higher threshold of ≥ 9 ("rule-in" approach) and a lower threshold of > 4 ("rule-out" approach). RESULTS: In total, 169 patients with 196 nodules could be included (mean age ± SD, 64.5 ± 9.2 year; 49% females). Mean LCP scores for original, 25% and 5% dose levels were 8.5 ± 1.7, 8.4 ± 1.7 (p > 0.05 vs. original dose) and 8.2 ± 1.9 (p < 0.05 vs. original dose), respectively. The proportion of correctly classified nodules with the "rule-in" approach decreased with simulated dose reduction from 58.2 to 56.1% (p = 0.34) and to 52.0% for the respective dose levels (p = 0.01). For the "rule-out" approach the respective values were 95.9%, 96.4%, and 94.4% (p = 0.12). When reducing the original dose to 25%/5%, eight/twenty-two nodules shifted to a lower, five/seven nodules to a higher malignancy risk group. CONCLUSION: CT dose reduction may affect the analyzed LCP-CNN regarding the classification of pulmonary malignancies and potentially alter pulmonary nodule management. CLINICAL RELEVANCE STATEMENT: Utilization of a "rule-out" approach with a lower malignancy risk threshold prevents underestimation of the nodule malignancy risk for the analyzed software, especially in high-risk cohorts. KEY POINTS: • LCP-CNN may be affected by CT image parameters such as noise resulting from low-dose CT acquisitions. • CT dose reduction can alter pulmonary nodule management recommendations by affecting the outcome of the LCP-CNN. • Utilization of a lower malignancy risk threshold prevents underestimation of pulmonary malignancies in high-risk cohorts.

20.
Eur Radiol ; 33(4): 2450-2460, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36462042

RESUMO

OBJECTIVES: To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series. METHODS: Consecutive patients (n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNCConv) and a novel calcium-preserving (VNCPC) algorithm. EAT was segmented on TNC, VNCConv, VNCPC, and CCTA (CTA-30) series using thresholds of -190 to -30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA0). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t-test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data. RESULTS: EAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R2 > 0.9). Measurements on the novel VNCPC series showed the best correlation (R2 = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were -12%, -3%, -13%, and +10% for VNCConv, VNCPC, CTA-30, and CTA0 compared to TNC. Distribution of CT values on VNCPC showed less difference to TNC than on VNCConv (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016). CONCLUSIONS: VNCPC-reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient's radiation dose. KEY POINTS: • Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R2>0.9). • Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values. • A novel VNC algorithm (VNCPC) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series.


Assuntos
Angiografia , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Reprodutibilidade dos Testes , Fótons , Tecido Adiposo/diagnóstico por imagem , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA