Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.394
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Trends Genet ; 39(1): 1-4, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934594

RESUMO

Ionizing radiation (IR)-induced DNA damage and repair are complex and occur at hierarchical chromatin structures; radiobiology needs to be studied from a 3D-genomic perspective. Differences in IR damage and repair throughout the 3D genome may help to explain differences in radiosensitivity.


Assuntos
Dano ao DNA , Reparo do DNA , Reparo do DNA/genética , Dano ao DNA/genética , Radiação Ionizante , Tolerância a Radiação/genética , Genômica
2.
Mol Cell ; 66(2): 206-220.e9, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28416140

RESUMO

Cells exposed to hypoxia experience replication stress but do not accumulate DNA damage, suggesting sustained DNA replication. Ribonucleotide reductase (RNR) is the only enzyme capable of de novo synthesis of deoxyribonucleotide triphosphates (dNTPs). However, oxygen is an essential cofactor for mammalian RNR (RRM1/RRM2 and RRM1/RRM2B), leading us to question the source of dNTPs in hypoxia. Here, we show that the RRM1/RRM2B enzyme is capable of retaining activity in hypoxia and therefore is favored over RRM1/RRM2 in order to preserve ongoing replication and avoid the accumulation of DNA damage. We found two distinct mechanisms by which RRM2B maintains hypoxic activity and identified responsible residues in RRM2B. The importance of RRM2B in the response to tumor hypoxia is further illustrated by correlation of its expression with a hypoxic signature in patient samples and its roles in tumor growth and radioresistance. Our data provide mechanistic insight into RNR biology, highlighting RRM2B as a hypoxic-specific, anti-cancer therapeutic target.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias do Colo/enzimologia , Replicação do DNA , DNA de Neoplasias/biossíntese , Oxigênio/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/radioterapia , Dano ao DNA , DNA de Neoplasias/genética , Feminino , Células HCT116 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Interferência de RNA , Tolerância a Radiação , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/genética , Fatores de Tempo , Transfecção , Carga Tumoral , Hipóxia Tumoral , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Cell Proteomics ; 22(6): 100551, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37076047

RESUMO

Esophageal cancer is the seventh most common cancer in the world. Although traditional treatment methods such as radiotherapy and chemotherapy have good effects, their side effects and drug resistance remain problematic. The repositioning of drug function provides new ideas for the research and development of anticancer drugs. We previously showed that the Food and Drug Administration-approved drug sulconazole can effectively inhibit the growth of esophageal cancer cells, but its molecular mechanism is not clear. Here, our study demonstrated that sulconazole had a broad spectrum of anticancer effects. It can not only inhibit the proliferation but also inhibit the migration of esophageal cancer cells. Both transcriptomic sequencing and proteomic sequencing showed that sulconazole could promote various types of programmed cell death and inhibit glycolysis and its related pathways. Experimentally, we found that sulconazole induced apoptosis, pyroptosis, necroptosis, and ferroptosis. Mechanistically, sulconazole triggered mitochondrial oxidative stress and inhibited glycolysis. Finally, we showed that low-dose sulconazole can increase radiosensitivity of esophageal cancer cells. Taken together, these new findings provide strong laboratory evidence for the clinical application of sulconazole in esophageal cancer.


Assuntos
Neoplasias Esofágicas , Proteômica , Humanos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Tolerância a Radiação , Estresse Oxidativo , Apoptose , Glicólise
4.
Artigo em Inglês | MEDLINE | ID: mdl-38977084

RESUMO

BACKGROUND: DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has an essential role in the non-homologous end-joining pathway that repairs DNA double-strand breaks in V(D)J recombination involved in the expression of T- and B-cell receptors. Whereas homozygous mutations in PRKDC define the scid mouse, a model that has been widely used in biology, human mutations in PRKDC are extremely rare and the disease spectrum has not been described so far. OBJECTIVE: To provide an update on the genetics, clinical spectrum, immunological profile, and therapy of DNA-PKcs deficiency in human. METHODS: The clinical, biological, and treatment data from the 6 cases published to date and from 1 new patient were obtained and analyzed. Rubella PCR was performed on available granuloma material. RESULTS: We report on 7 patients; Six patients displayed the autosomal recessive p.L3062R mutation in PRKDC gene encoding DNA-PKcs. Atypical severe combined immunodeficiency with inflammatory lesions, granulomas, and autoimmunity was the predominant clinical manifestation (n=5/7). Rubella viral strain was detected in the granuloma of 1 patient over the 2 tested. T-cell counts, including naïve CD4+CD45RA+ T cells and T-cell function were low at diagnosis for 6 patients. For most patients with available values naïve CD4+CD45RA+ T cells decreased over time (n=5/6). Hematopoietic stem cell transplantation (HSCT) was performed in 5 patients, of whom 4 are still alive without transplant-related morbidity. Sustained T- and B-cell reconstitution was respectively observed for 4 and 3 patients, after a median follow-up of 8 years (range 3-16 y). CONCLUSION: DNA-PKcs deficiency mainly manifests as an inflammatory disease with granuloma and autoimmune features, along with severe infections.

5.
Am J Physiol Cell Physiol ; 326(6): C1753-C1768, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682239

RESUMO

This study investigated mogrol's impact on non-small cell lung cancer (NSCLC) radiosensitivity and underlying mechanisms, using various methods including assays, bioinformatics, and xenograft models. CCK-8, clonogenic, flow cytometry, TUNEL, and Western blot assays evaluated mogrol and radiation effects on NSCLC viability and apoptosis. Ubiquitin-specific protease 22 (USP22) expression in NSCLC patient tissues was determined by RT-qPCR and Western blot. A xenograft model validated mogrol's effects on tumor growth. Bioinformatics identified four ubiquitin-specific proteases, including USP22, in NSCLC. Kaplan-Meier analysis confirmed USP22's value in lung cancer survival. Human Protein Atlas (HPA) database analysis indicated higher USP22 expression in lung cancer tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis implicated ERK1/2 in NSCLC progression, and molecular docking showed stability between mogrol and ERK1/2. Further in vivo and in vitro experiments have demonstrated that mogrol enhances the inhibitory effect of radiation on NSCLC cell viability and clonogenic capacity. Cell viability and clonogenic capacity are reduced by >50%, and an increase in cellular apoptosis is observed, with apoptotic levels reaching 10%. USP22 expression was significantly elevated in NSCLC tissues, particularly in radiotherapy-resistant patients. Mogrol downregulated USP22 expression by inhibiting the ERK/CREB pathway, lowering COX2 expression. Mogrol also enhanced radiation's inhibition of tumor growth in mice. Mogrol enhances NSCLC radiosensitivity by downregulating USP22 via the ERK/CREB pathway, leading to reduced COX2 expression.NEW & NOTEWORTHY Mogrol enhances non-small cell lung cancer (NSCLC) cell sensitivity to radiotherapy by downregulating USP22 through the ERK/CREB pathway, reducing COX2 expression. These findings highlight mogrol's potential as an adjunct to improve NSCLC radiotherapy and open avenues for further research and clinical applications.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Tolerância a Radiação , Ubiquitina Tiolesterase , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Animais , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Tolerância a Radiação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Células A549 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Masculino , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Feminino , Radiossensibilizantes/farmacologia
6.
Cancer Sci ; 115(6): 1820-1833, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38571294

RESUMO

Radiotherapy, one of the most fundamental cancer treatments, is confronted with the dilemma of treatment failure due to radioresistance. To predict the radiosensitivity and improve tumor treatment efficiency in pan-cancer, we developed a model called Radiation Intrinsic Sensitivity Evaluation (RISE). The RISE model was built using cell line-based mRNA sequencing data from five tumor types with varying radiation sensitivity. Through four cell-derived datasets, two public tissue-derived cohorts, and one local cohort of 42 nasopharyngeal carcinoma patients, we demonstrated that RISE could effectively predict the level of radiation sensitivity (area under the ROC curve [AUC] from 0.666 to 1 across different datasets). After the verification by the colony formation assay and flow cytometric analysis of apoptosis, our four well-established radioresistant cell models successfully proved higher RISE values in radioresistant cells by RT-qPCR experiments. We also explored the prognostic value of RISE in five independent TCGA cohorts consisting of 1137 patients who received radiation therapy and found that RISE was an independent adverse prognostic factor (pooled multivariate Cox regression hazard ratio [HR]: 1.84, 95% CI 1.39-2.42; p < 0.01). RISE showed a promising ability to evaluate the radiotherapy benefit while predicting the prognosis of cancer patients, enabling clinicians to make individualized radiotherapy strategies in the future and improve the success rate of radiotherapy.


Assuntos
Neoplasias , Tolerância a Radiação , Humanos , Tolerância a Radiação/genética , Prognóstico , Neoplasias/radioterapia , Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Feminino , Masculino , Apoptose/efeitos da radiação , Pessoa de Meia-Idade , Curva ROC , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia
7.
Funct Integr Genomics ; 24(2): 52, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448654

RESUMO

Long non-coding RNAs (lncRNAs) appear to be the crucial modulators in various processes and critically influence the oncogenesis. As one of the LncRNAs, LncRNA CCAT1 has been reported to be closely associated with the progression multiple cancers, but its role in modulating the radioresistance of lung adenocarcinoma (LUAD) remains unclear. In our present study, we screened the potential radioresistance related LncRNAs in LUAD based on the data from The Cancer Genome Atlas (TCGA) database. Data suggested that CCAT1 was abundantly expressed in LUAD and CCAT1 was significantly associated with poor prognosis and radioresistance. Moreover, our in vitro experiments showed that radiation treatment could trigger elevated expression of CCAT1 in the human LUAD cell lines. Further loss/gain-of-function investigations indicated that CCAT1 knockdown significantly inhibited cell proliferation, migration and promoted cell apoptosis in NCI-H1299 cells under irradiation, whereas CCAT1 overexpression in A549 cells yield the opposite effects. In summary, we identified the promoting role of CCAT1 in radioresistance of LUAD, which may provide a theoretical basis for radiotherapy sensitization of LUAD.


Assuntos
Adenocarcinoma , RNA Longo não Codificante , Humanos , Adenocarcinoma/genética , Adenocarcinoma/radioterapia , Epigenômica , Pulmão , Oncogenes , RNA Longo não Codificante/genética
8.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35066588

RESUMO

Multiple transcriptomic predictors of tumour cell radiosensitivity (RS) have been proposed, but they have not been benchmarked against one another or to control models. To address this, we present RadSigBench, a comprehensive benchmarking framework for RS signatures. The approach compares candidate models to those developed from randomly resampled control signatures and from cellular processes integral to the radiation response. Robust evaluation of signature accuracy, both overall and for individual tissues, is performed. The NCI60 and Cancer Cell Line Encyclopaedia datasets are integrated into our workflow. Prediction of two measures of RS is assessed: survival fraction after 2 Gy and mean inactivation dose. We apply the RadSigBench framework to seven prominent published signatures of radiation sensitivity and test for equivalence to control signatures. The mean out-of-sample R2 for the published models on test data was very poor at 0.01 (range: -0.05 to 0.09) for Cancer Cell Line Encyclopedia and 0.00 (range: -0.19 to 0.19) in the NCI60 data. The accuracy of both published and cellular process signatures investigated was equivalent to the resampled controls, suggesting that these signatures contain limited radiation-specific information. Enhanced modelling strategies are needed for effective prediction of intrinsic RS to inform clinical treatment regimes. We make recommendations for methodological improvements, for example the inclusion of perturbation data, multiomics, advanced machine learning and mechanistic modelling. Our validation framework provides for robust performance assessment of ongoing developments in intrinsic RS prediction.


Assuntos
Benchmarking , Neoplasias , Genômica , Humanos , Neoplasias/genética , Neoplasias/radioterapia , Tolerância a Radiação/genética , Transcriptoma
9.
J Transl Med ; 22(1): 228, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431575

RESUMO

BACKGROUND: We aimed to investigate the effects of PinX1 on non-small cell lung cancer(NSCLC) radiosensitivity and radiotherapy-associated tumor immune microenvironment and its mechanisms. METHODS: The effect of PinX1 silencing on radiosensitivity in NSCLC was assessed by colony formation and CCK8 assay, immunofluorescence detection of γ- H2AX and micronucleus assay. Western blot was used to assess the effect of PinX1 silencing on DNA damage repair pathway and cGAS-STING pathway. The nude mouse and Lewis lung cancer mouse model were used to assess the combined efficacy of PinX1 silencing and radiotherapy in vivo. Changes in the tumor immune microenvironment were assessed by flow cytometry for different treatment modalities in the Lewis luuse model. The interaction protein RBM10 was screened by immunoprecipitation-mass spectrometry. RESULTS: Silencing PinX1 enhanced radiosensitivity and activation of the cGAS-STING pathway while attenuating the DNA damage repair pathway. Silencing PinX1 further increases radiotherapy-stimulated CD8+ T cell infiltration and activation, enhances tumor control and improves survival in vivo; Moreover, PinX1 downregulation improves the anti-tumor efficacy of radioimmunotherapy, increases radioimmune-stimulated CD8+ T cell infiltration, and reprograms M2-type macrophages into M1-type macrophages in tumor tissues. The interaction of PinX1 and RBM10 may promote telomere maintenance by assisting telomerase localization to telomeres, thereby inhibiting the immunostimulatory effects of IR. CONCLUSIONS: In NSCLC, silencing PinX1 significantly contributed to the radiosensitivity and promoted the efficacy of radioimmunotherapy. Mechanistically, PinX1 may regulate the transport of telomerase to telomeres through interacting with RBM10, which promotes telomere maintenance and DNA stabilization. Our findings reveal that PinX1 is a potential target to enhance the efficacy of radioimmunotherapy in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Telomerase , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Proteínas Supressoras de Tumor/genética , Proteínas de Ciclo Celular/metabolismo , Telomerase/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Linhagem Celular Tumoral , Tolerância a Radiação , Microambiente Tumoral , Proteínas de Ligação a RNA
10.
J Transl Med ; 22(1): 288, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493128

RESUMO

OBJECTIVE: Non-small cell lung cancer (NSCLC) often exhibits resistance to radiotherapy, posing significant treatment challenges. This study investigates the role of SMAD3 in NSCLC, focusing on its potential in influencing radiosensitivity via the ITGA6/PI3K/Akt pathway. METHODS: The study utilized gene expression data from the GEO database to identify differentially expressed genes related to radiotherapy resistance in NSCLC. Using the GSE37745 dataset, prognostic genes were identified through Cox regression and survival analysis. Functional roles of target genes were explored using Gene Set Enrichment Analysis (GSEA) and co-expression analyses. Gene promoter methylation levels were assessed using databases like UALCAN, DNMIVD, and UCSC Xena, while the TISCH database provided insights into the correlation between target genes and CAFs. Experiments included RT-qPCR, Western blot, and immunohistochemistry on NSCLC patient samples, in vitro studies on isolated CAFs cells, and in vivo nude mouse tumor models. RESULTS: Fifteen key genes associated with radiotherapy resistance in NSCLC cells were identified. SMAD3 was recognized as an independent prognostic factor for NSCLC, linked to poor patient outcomes. High expression of SMAD3 was correlated with low DNA methylation in its promoter region and was enriched in CAFs. In vitro and in vivo experiments confirmed that SMAD3 promotes radiotherapy resistance by activating the ITGA6/PI3K/Akt signaling pathway. CONCLUSION: High expression of SMAD3 in NSCLC tissues, cells, and CAFs is closely associated with poor prognosis and increased radiotherapy resistance. SMAD3 is likely to enhance radiotherapy resistance in NSCLC cells by activating the ITGA6/PI3K/Akt signaling pathway.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Metilação de DNA/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Tolerância a Radiação/genética , Regiões Promotoras Genéticas/genética , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Proteína Smad3/genética , Proteína Smad3/metabolismo
11.
Pediatr Allergy Immunol ; 35(6): e14171, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860449

RESUMO

BACKGROUND: Artemis deficiency is an autosomal recessive disorder characterized by a combined immunodeficiency with increased cellular radiosensitivity. In this review, the clinical and genetic characteristics of 15 patients with DCLRE1C variants are presented. METHODS: The demographic, clinical, immunologic, and genetic characteristics of patients with confirmed DCLRE1C variants diagnosed between 2013 and 2023 were collected retrospectively. Three patients were evaluated for radiosensitivity by the Comet assay, compared with age- and sex-matched healthy control. RESULTS: Seven patients who had severe infections in the first 6 months of life were diagnosed with T-B-NK+ SCID (severe combined immunodeficiency). Among them, four individuals underwent transplantation, and one of those died due to post-transplant complications in early life. Eight patients had hypomorphic variants. Half of them were awaiting a suitable donor, while the other half had already undergone transplantation. The majority of patients were born into a consanguineous family (93.3%). Most patients had recurrent sinopulmonary infections (73.3%), and one patient had no other infection than an acute respiratory infection before diagnosis. Two patients (13.3%) had autoimmunity in the form of autoimmune hemolytic anemia. Growth retardation was observed in only one patient (6.6%), and no malignancy was detected in the surviving 11 patients during the median (IQR) of 21.5 (12-45) months of follow-up. Three patients who had novel variants exhibited increased radiosensitivity and compromised DNA repair, providing a potential vulnerability to malignant transformation. CONCLUSION: Early diagnosis, radiation avoidance, and careful preparation for transplantation contribute to minimizing complications, enhancing life expectancy, and improving the patient's quality of life.


Assuntos
Proteínas de Ligação a DNA , Tolerância a Radiação , Imunodeficiência Combinada Severa , Humanos , Tolerância a Radiação/genética , Masculino , Feminino , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Lactente , Proteínas de Ligação a DNA/genética , Pré-Escolar , Estudos Retrospectivos , Endonucleases/genética , Proteínas Nucleares/genética , Criança , Estudos de Coortes
12.
Environ Sci Technol ; 58(5): 2204-2213, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38269402

RESUMO

Ionizing radiation exposure induces significant DNA damage and cell death in aquatic species. Accurate sensing and quantification play pivotal roles in environmental monitoring and surveillance. Zebrafish (Danio rerio) is a well-suited animal model for research into this aspect, especially with recent development of cytogenetic and transgenic tools. In this study, we present time-course studies of chromosome aberrations and cell death in zebrafish embryos exposed to 2 Gy 137Cs total-body irradiation. Using a cytogenetic approach, we quantified chromosome and chromatid aberrations in irradiated embryos at 6, 14, 20, and 24 h postirradiation. Metaphases with aberrations showed rapid declining kinetics, accompanied by incomplete karyotypes and irregular chromatin contents. Using an apoptosis-reporting transgenic zebrafish, we found increasing cell death along these time points, with the embryonic eyes and brain contributing the majority of the cell death volumes. We provide evidence that self-proliferating progenitor cells form the underlying linkage between the two kinetics and their positions define radiosensitive niches in zebrafish embryos. Our results provide detailed chromosome aberration and cell death dynamics in 137Cs-irradiated zebrafish embryos and unveil the appropriate timeline and tissue positions for accurate sensing and quantification of radiation-induced damages in zebrafish embryos.


Assuntos
Aberrações Cromossômicas , Peixe-Zebra , Animais , Peixe-Zebra/genética , Raios gama , Cromossomos , Apoptose , Embrião não Mamífero/efeitos da radiação
13.
Mol Ther ; 31(9): 2633-2650, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37482682

RESUMO

Chromatin remodeling and N6-methyladenosine (m6A) modification are two critical layers in controlling gene expression and DNA damage signaling in most eukaryotic bioprocesses. Here, we report that poly(ADP-ribose) polymerase 1 (PARP1) controls the chromatin accessibility of METTL3 to regulate its transcription and subsequent m6A methylation of poly(A)+ RNA in response to DNA damage induced by radiation. The transcription factors nuclear factor I-C (NFIC) and TATA binding protein (TBP) are dependent on PARP1 to access the METTL3 promoter to activate METTL3 transcription. Upon irradiation or PARP1 inhibitor treatment, PARP1 disassociated from METTL3 promoter chromatin, which resulted in attenuated accessibility of NFIC and TBP and, consequently, suppressed METTL3 expression and RNA m6A methylation. Lysophosphatidic Acid Receptor 5 (LPAR5) mRNA was identified as a target of METTL3, and m6A methylation was located at A1881. The level of m6A methylation of LPAR5 significantly decreased, along with METTL3 depression, in cells after irradiation or PARP1 inhibition. Mutation of the LPAR5 A1881 locus in its 3' UTR results in loss of m6A methylation and, consequently, decreased stability of LPAR5 mRNA. METTL3-targeted small-molecule inhibitors depress murine xenograft tumor growth and exhibit a synergistic effect with radiotherapy in vivo. These findings advance our comprehensive understanding of PARP-related biological roles, which may have implications for developing valuable therapeutic strategies for PARP1 inhibitors in oncology.


Assuntos
Cromatina , Neoplasias , Humanos , Camundongos , Animais , Cromatina/genética , Metilação , RNA/metabolismo , Fatores de Transcrição/genética , RNA Mensageiro/genética , Neoplasias/genética , Neoplasias/radioterapia , Metiltransferases/genética , Metiltransferases/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
14.
Biochem Genet ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512583

RESUMO

Radiotherapy resistance is a major cause of treatment failure and leads to poor prognosis in nasopharyngeal carcinoma (NPC). Evidences indicate that microRNA (miRNAs) are closely associated with radiotherapy for NPC. In this study, we found that the expression level of miR-92b-3p was significantly higher in radiotherapy-sensitive NPC patients than in radiotherapy-resistant patients. High expression of miR-92b-3p was associated with good prognosis in patients with NPC, and high expression of FHL2 was associated with poor prognosis in patients with NPC. It was predicted that miR-92b-3p could directly target and bind FHL2. Overexpression of miR-92b-3p significantly inhibited FHL2 expression at the mRNA as well as protein levels, while inhibition of miR-92b-3p expression significantly upregulated FHL2 expression. Overexpression of miR-92b-3p significantly reduced proliferation and colony formation in NPC cells. Inhibition of miR-92b-3p attenuated the sensitivity of nasopharyngeal carcinoma to radiotherapy, while simultaneous inhibition of miR-92b-3p and FHL2 increased the sensitivity of NPC to radiotherapy. Our findings highlighted that miR-92b-3p is closely associated with radiotherapy sensitivity and prognosis in NPC patients and may improve the sensitivity of NPC to radiotherapy by targeting FHL2.

15.
Phytother Res ; 38(8): 4151-4167, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39136618

RESUMO

Despite active clinical trials on the use of Oleandrin alone or in combination with other drugs for the treatment of solid tumors, the potential synergistic effect of Oleandrin with radiotherapy remains unknown. This study reveals a new mechanism by which Oleandrin targets ATM and ATR kinase-mediated radiosensitization in lung cancer. Various assays, including clonogenic, Comet, immunofluorescence staining, apoptosis and Cell cycle assays, were conducted to evaluate the impact of oleandrin on radiation-induced double-strand break repair and cell cycle distribution. Western blot analysis was utilized to investigate alterations in signal transduction pathways related to double-strand break repair. The efficacy and toxicity of the combined therapy were assessed in a preclinical xenotransplantation model. Functionally, Oleandrin weakens the DNA damage repair ability and enhances the radiation sensitivity of lung cells. Mechanistically, Oleandrin inhibits ATM and ATR kinase activities, blocking the transmission of ATM-CHK2 and ATR-CHK1 cell cycle checkpoint signaling axes. This accelerates the passage of tumor cells through the G2 phase after radiotherapy, substantially facilitating the rapid entry of large numbers of inadequately repaired cells into mitosis and ultimately triggering mitotic catastrophe. The combined treatment of Oleandrin and radiotherapy demonstrated superior inhibition of tumor proliferation compared to either treatment alone. Our findings highlight Oleandrin as a novel and effective inhibitor of ATM and ATR kinase, offering new possibilities for the development of clinical radiosensitizing adjuvants.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Cardenolídeos , Dano ao DNA , Neoplasias Pulmonares , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Animais , Cardenolídeos/farmacologia , Dano ao DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Tolerância a Radiação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Reparo do DNA/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células A549
16.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000262

RESUMO

Radiotherapy in the head-and-neck area is one of the main curative treatment options. However, this comes at the cost of varying levels of normal tissue toxicity, affecting up to 80% of patients. Mucositis can cause pain, weight loss and treatment delays, leading to worse outcomes and a decreased quality of life. Therefore, there is an urgent need for an approach to predicting normal mucosal responses in patients prior to treatment. We here describe an assay to detect irradiation responses in healthy oral mucosa tissue. Mucosa specimens from the oral cavity were obtained after surgical resection, cut into thin slices, irradiated and cultured for three days. Seven samples were irradiated with X-ray, and three additional samples were irradiated with both X-ray and protons. Healthy oral mucosa tissue slices maintained normal morphology and viability for three days. We measured a dose-dependent response to X-ray irradiation and compared X-ray and proton irradiation in the same mucosa sample using standardized automated image analysis. Furthermore, increased levels of inflammation-inducing factors-major drivers of mucositis development-could be detected after irradiation. This model can be utilized for investigating mechanistic aspects of mucositis development and can be developed into an assay to predict radiation-induced toxicity in normal mucosa.


Assuntos
Mucosa Bucal , Humanos , Mucosa Bucal/efeitos da radiação , Raios X/efeitos adversos , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Masculino , Mucosite/etiologia , Mucosite/patologia , Feminino , Relação Dose-Resposta à Radiação , Estomatite/etiologia , Estomatite/patologia , Adulto , Pessoa de Meia-Idade
17.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891817

RESUMO

(1) Head and neck squamous cell carcinoma (HNSCC) is common, while treatment is difficult, and mortality is high. Kinase inhibitors are promising to enhance the effects of radiotherapy. We compared the effects of the PARP inhibitors talazoparib and niraparib and that of the DNA-PKcs inhibitor AZD7648, combined with ionizing radiation. (2) Seven HNSCC cell lines, including Cal33, CLS-354, Detroit 562, HSC4, RPMI2650 (HPV-negative), UD-SCC-2 and UM-SCC-47 (HPV-positive), and two healthy fibroblast cell lines, SBLF8 and SBLF9, were studied. Flow cytometry was used to analyze apoptosis and necrosis induction (AnnexinV/7AAD) and cell cycle distribution (Hoechst). Cell inactivation was studied by the colony-forming assay. (3) AZD7648 had the strongest effects, radiosensitizing all HNSCC cell lines, almost always in a supra-additive manner. Talazoparib and niraparib were effective in both HPV-positive cell lines but only consistently in one and two HPV-negative cell lines, respectively. Healthy fibroblasts were not affected by any combined treatment in apoptosis and necrosis induction or G2/M-phase arrest. AZD7648 alone was not toxic to healthy fibroblasts, while the combination with ionizing radiation reduced clonogenicity. (4) In conclusion, talazoparib, niraparib and, most potently, AZD7648 could improve radiation therapy in HNSCC. Healthy fibroblasts tolerated AZD7648 alone extremely well, but irradiation-induced effects might occur. Our results justify in vivo studies.


Assuntos
Apoptose , Indazóis , Ftalazinas , Piperidinas , Inibidores de Poli(ADP-Ribose) Polimerases , Radiossensibilizantes , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Ftalazinas/farmacologia , Indazóis/farmacologia , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Radiossensibilizantes/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Apoptose/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo
18.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256084

RESUMO

Hypoxia-induced radioresistance reduces the efficacy of radiotherapy for solid malignancies, including non-small cell lung cancer (NSCLC). Cellular hypoxia can confer radioresistance through cellular and tumor micro-environment adaptations. Until recently, studies evaluating radioresistance secondary to hypoxia were designed to maintain cellular hypoxia only before and during irradiation, while any handling of post-irradiated cells was carried out in standard oxic conditions due to the unavailability of hypoxia workstations. This limited the possibility of simulating in vivo or clinical conditions in vitro. The presence of molecular oxygen is more important for the radiotoxicity of low-linear energy transfer (LET) radiation (e.g., X-rays) than that of high-LET carbon (12C) ions. The mechanisms responsible for 12C ions' potential to overcome hypoxia-induced radioresistance are currently not fully understood. Therefore, the radioresistance of hypoxic A549 NSCLC cells following exposure to X-rays or 12C ions was investigated along with cell cycle progression and gene expression by maintaining hypoxia before, during and after irradiation. A549 cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h and then irradiated with X-rays (200 kV) or 12C ions (35 MeV/n, LET ~75 keV/µm). Cell survival was evaluated using colony-forming ability (CFA) assays immediately or 24 h after irradiation (late plating). DNA double-strand breaks (DSBs) were analyzed using γH2AX immunofluorescence microscopy. Cell cycle progression was determined by flow cytometry of 4',6-diamidino-2-phenylindole-stained cells. The global transcription profile post-irradiation was evaluated by RNA sequencing. When hypoxia was maintained before, during and after irradiation, hypoxia-induced radioresistance was observed only in late plating CFA experiments. The killing efficiency of 12C ions was much higher than that of X-rays. Cell survival under hypoxia was affected more strongly by the timepoint of plating in the case of X-rays compared to 12C ions. Cell cycle arrest following irradiation under hypoxia was less pronounced but more prolonged. DSB induction and resolution following irradiation were not significantly different under normoxia and hypoxia. Gene expression response to irradiation primarily comprised cell cycle regulation for both radiation qualities and oxygen conditions. Several PI3K target genes involved in cell migration and cell motility were differentially upregulated in hypoxic cells. Hypoxia-induced radioresistance may be linked to altered cell cycle response to irradiation and PI3K-mediated changes in cell motility and migration in A549 cells rather than less DNA damage or faster repair.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Células A549 , Neoplasias Pulmonares/radioterapia , Hipóxia , Tolerância a Radiação , Oxigênio , Íons , Fosfatidilinositol 3-Quinases , Microambiente Tumoral
19.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396787

RESUMO

To improve breast cancer treatment and to enable new strategies for therapeutic resistance, therapeutic targets are constantly being studied. Potential targets are proteins of DNA repair and replication and genomic integrity, such as Flap Endonuclease 1 (FEN1). This study investigated the effects of FEN1 inhibitor FEN1-IN-4 in combination with ionizing radiation on cell death, clonogenic survival, the cell cycle, senescence, doubling time, DNA double-strand breaks and micronuclei in breast cancer cells, breast cells and healthy skin fibroblasts. Furthermore, the variation in the baseline FEN1 level and its influence on treatment prognosis was investigated. The cell lines show specific response patterns in the aspects studied and have heterogeneous baseline FEN1 levels. FEN1-IN-4 has cytotoxic, cytostatic and radiosensitizing effects, expressed through increasing cell death by apoptosis and necrosis, G2M share, senescence, double-strand breaks and a reduced survival fraction. Nevertheless, some cells are less affected by the cytotoxicity and fibroblasts show a rather limited response. In vivo, high FEN1 mRNA expression worsens the prognosis of breast cancer patients. Due to the increased expression in breast cancer tissue, FEN1 could represent a new tumor and prognosis marker and FEN1-IN-4 may serve as a new potent agent in personalized medicine and targeted breast cancer therapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Endonucleases Flap , Feminino , Humanos , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Reparo do DNA , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Prognóstico
20.
Molecules ; 29(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338373

RESUMO

This novel radiolabeled chitosan nanoparticle, facilitated with curcumin, increased doxorubicin cytotoxicity and radiosensitivity to MG-63 osteosarcoma cells in a three-dimensional model. Delivery of the anti-epidermal growth factor receptor (EGFR) targeted carboxymethyl chitosan nanoparticles, directly labeled with Na131I (ICED-N), achieved deep tumor penetration in a three-dimensional model. Of three kinetic models, the Higuchi model more closely matched the experimental curve and release profiles. The anti-EGFR targeting resulted in a 513-fold greater targeting efficacy to MG-63 (EGFR+) cells than the control fibroblast (EGFR-) cells. The curcumin-enhanced ICED-N (4 × 0.925 MBq) fractionated-dose regime achieved an 18.3-fold increase in cell cytotoxicity compared to the single-dose (1 × 3.70 MBq) doxorubicin-loaded nanoparticle, and a 13.6-fold increase in cell cytotoxicity compared to the single-dose Na131I nanoparticle. Moreover, the ICED-N fractionated dose increased cells in the G2/M phase 8.78-fold, indicating the cell cycle arrest in the G2/M phase is associated with DNA fragmentation, and the intracellular damage is unable to be repaired. Overall, the results indicate that the fractionated dose was more efficacious than a single dose, and curcumin substantially increased doxorubicin cytotoxicity and amplified osteosarcoma cell radiosensitivity to Na131I.


Assuntos
Neoplasias Ósseas , Quitosana , Curcumina , Nanopartículas , Osteossarcoma , Humanos , Curcumina/farmacologia , Portadores de Fármacos , Radioisótopos do Iodo , Doxorrubicina/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/radioterapia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/radioterapia , Receptores ErbB , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA