Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(3): 1452-1461, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38214086

RESUMO

Cationic surfactants are used in many industrial processes and in consumer products with concurrent release into the aquatic environment, where they may accumulate in aquatic organisms to regulatoryly relevant thresholds. Here, we aimed to better understand the bioconcentration behavior of three selected cationic surfactants, namely N,N-dimethyldecylamine (T10), N-methyldodecylamine (S12), and N,N,N-trimethyltetradecylammonium cation (Q14), in the cells of fish liver (RTL-W1) and gill (RTgill-W1) cell lines. We conducted full mass balances for bioconcentration tests with the cell cultures, in which the medium, the cell surface, the cells themselves, and the plastic compartment were sampled and quantified for each surfactant by HPLC MS/MS. Accumulation in/to cells correlated with the surfactants' alkyl chain lengths and their membrane lipid-water partitioning coefficient, DMLW. Cell-derived bioconcentration factors (BCF) of T10 and S12 were within a factor of 3.5 to in vivo BCF obtained from the literature, while the cell-derived BCF values for Q14 were >100 times higher than the in vivo BCF. From our experiments, rainbow trout cell lines appear as a suitable conservative in vitro screening method for bioconcentration assessment of cationic surfactants and are promising for further testing.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Bioacumulação , Espectrometria de Massas em Tandem , Tensoativos/metabolismo , Oncorhynchus mykiss/metabolismo , Linhagem Celular , Poluentes Químicos da Água/metabolismo
2.
Toxicon ; 195: 69-77, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33711366

RESUMO

Secondary metabolites of cyanobacteria and algae released during algal blooms often exhibit toxic effects, but only a small number of the metabolites are the subject of routine analytical screenings. Alternatively, ecotoxicological assays offer a better representation of the overall negative effects. The aim of this work was to compare multiple assays in their sensitivity towards cellular algal organic matter (COM) of the toxin-producing cyanobacterium Microcystis aeruginosa. Multiple endpoints were investigated: mortality, growth inhibition, bioluminescence inhibition, genotoxicity, endocrine-disrupting effects, oxidative stress, and the induction of ethoxyresorufin-O-deethylase (EROD). Three rainbow trout (Oncorhynchus mykiss) cell lines as well as representatives of bacteria, yeasts, algae, vascular plants, and crustaceans were employed, and the results were expressed per mg of dissolved organic carbon (DOC) in the COM. M. aeruginosa COM was toxic to the RTgill-W1, RTG-2, and RTL-W1 cell lines (EC50 values ranging from 0.48 ± 0.02 to 1.9 ± 0.1 mgDOC/L), to the crustacean Thamnocephalus platyurus (LC50 = 20 ± 1 mgDOC/L), and to Lepidium sativum (IC50 = 241 ± 13 mgDOC/L). In contrast, no effect was observed for bacteria and yeasts, and the growth of the alga Desmodesmus subspicatus was even stimulated. No genotoxicity, endocrine-disrupting effects or increase in oxidative stress or EROD activity was detected. The content of six microcystins (MC-LR, MC-RR, MC-YR, MC-LY, MC-LW, and MC-LF), anatoxin-a, cylindrospermopsin, and nodularin in the M. aeruginosa COM was determined by liquid chromatography-tandem mass spectrometry. An artificially prepared mixture of the detected cyanotoxins in the corresponding concentrations did not induce response in the O. mykiss cell lines and T. platyurus, suggesting that other cyanobacterial metabolites are responsible for the toxicity of M. aeruginosa.


Assuntos
Cianobactérias , Microcystis , Eutrofização , Microcistinas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA