Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 132(2): 1210-1220, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34464989

RESUMO

AIMS: To develop an oxygen sensor-based method for testing total aerobic viable counts (TVC) in raw meat samples and cattle carcass swabs, which is rapid, simple, affordable, provides good sensitivity and analytical performance and allows on-site use. METHODS AND RESULTS: The test uses the same sample preparation procedure as the established plate counting TVC method for meat samples and carcasses, ISO4833-1:2013. After this liquid samples are transferred into standard 25-ml vials with built-in phosphorescent O2  sensors and incubated on a block heater with hourly readings of sensor signals with a handheld reader, to determine signal threshold time (TT, hours) for each sample. The method is demonstrated with the quantification of TVC in industrial cuts of raw beef meat (CFU per g) and carcass swabs (CFU per cm2 ). Calibration curves were generated, which give the following analytical equations for calculating the TVC load in unknown samples from measured TT values: TVC [Log(CFU per cm2 )] = 7.83-0.73*TT(h) and TVC [Log(CFU per g)] = 8.74-0.70*TT(h) for the carcass swabs and meat samples respectively. The new tests show good correlation with the ISO methods, with correlation coefficients 0.85 and 0.83 respectively. The testing requires no dilutions, covers the ranges 2-7 Log(CFU per g) for the meat samples and 1-7 Log(CFU per cm2 ) for carcass swabs, and has time to result 1-10 h with faster detection of more contaminated samples. CONCLUSIONS: The sensor-based testing demonstrates simplicity, high speed, sample throughput and automation. It can provide a straightforward replacement for the conventional TVC tests, which are time consuming, laborious and have time to result of 48-72 h. SIGNIFICANCE AND IMPACT OF THE STUDY: The method(s) can be adopted by the meat industry and research labs, and used to improve microbial quality and safety of meat products and processes.


Assuntos
Microbiologia de Alimentos , Produtos da Carne , Animais , Bovinos , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Carne
2.
Cytotherapy ; 23(5): 390-398, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33775524

RESUMO

The Standards Coordinating Body for Gene, Cell, and Regenerative Medicines and Cell-Based Drug Discovery (SCB) supports the development and commercialization of regenerative medicine products by identifying and addressing industry-wide challenges through standards. Through extensive stakeholder engagement, the implementation of rapid microbial testing methods (RMTMs) was identified as a high-priority need that must be addressed to facilitate more timely release of products. Since 2017, SCB has coordinated efforts to develop standards for this area through surveys, weekly meetings, workshops, leadership in working groups and participation in standards development organizations. This article describes the results of these efforts and discusses the current landscape of RMTMs for regenerative medicine products. Based on discussions with stakeholders across the field, an overview of traditional culture-based methods and limitations, alternative microbial testing technologies and current challenges, fit-for-purpose rapid microbial testing and case studies, risk-based strategies for selection of novel rapid microbial test methods and ongoing standards efforts for rapid microbial testing are captured here. To this end, SCB is facilitating several initiatives to address challenges associated with rapid microbial testing for regenerative medicine products. Two documentary standards are under development: an International Organization for Standardization standard to provide the framework for a risk-based approach to selecting fit-for-purpose assays primarily intended for cell and gene therapy products and an ASTM standard guide focused on sampling methods for microbial testing methods in tissue-engineered medical products. Working with the National Institute of Standards and Technology, SCB expects to facilitate the process of developing publicly available microbial materials for inter-laboratory testing. These studies will help collect the data necessary to facilitate validation of novel rapid methods. Finally, SCB has been working to increase awareness of, dialog about and participation in efforts to develop standards in the regenerative medicine field.


Assuntos
Medicina Regenerativa , Engenharia Tecidual , Bioensaio , Padrões de Referência
3.
Luminescence ; 36(3): 826-833, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33440050

RESUMO

Antimicrobial activity is tested when developing disinfectants, pharmaceutical products, cosmetics, and many other consumer products. However, the plate count method, the conventional way to count the number of microorganisms, needs several days of culture. Consequently, a means of rapid microbial detection is strongly desired to replace this method. We have already developed a rapid and sensitive microbial adenosine triphosphate (ATP) detection system utilizing ATP bioluminescence, which can quantify microbial ATP within 1 h. To apply this technique to antibacterial activity tests, the ATP method should be proved equal or superior to the conventional method. In this study, we conducted disinfectant activity tests comparing the ATP method and the plate count method, using polyhexamethylene biguanide (PHMB) in different concentrations (0-10 ppm) as a model disinfectant against Staphylococcus aureus and Aspergillus brasiliensis. We found that the log reduction of intracellular ATP had a positive correlation with the log reduction of the plate count. Moreover, the ATP method was able to distinguish different conditions of injured microbial cells that were observed using scanning electron microscopy, whereas colony counting detects only culturable cells. The ATP method is thus a rapid and useful alternative to the conventional method in the field of antimicrobial activity testing.


Assuntos
Trifosfato de Adenosina , Desinfetantes , Aspergillus , Bioensaio , Desinfetantes/farmacologia , Medições Luminescentes
4.
J Food Prot ; 58(7): 770-775, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31137326

RESUMO

A new microbial ATP bioluminescence assay was shown to be an accurate and rapid method to determine the levels of generic bacterial contamination on beef (n = 400 and pork (n = 320) carcasses sampled in commercial processing plants. Based on in vitro fecal dilution studies, the rapid microbial ATP (R-mATP) assay is as accurate as the standard plate count method for estimating bacteria in bovine or porcine fecal samples. The correlations (r) between the R-mATP assay and the standard aerobic plate count for beef and pork carcasses sampled in commercial processing were 0.91 and 0.93, respectively. A segmented-model statistical approach to determine the lower limits of assay sensitivity was developed. By using this model to analyze the in-plant data, the R-mATP test responded in a linear fashion to levels of microbial contamination of > log10 2.0 aerobic CFU/cm2 on beef carcasses and of > log10 3.2 aerobic CFU/cm2 for pork carcasses. The R-mATP assay requires approximately 5 min to complete, including sampling. Given the rapidity and accuracy of the assay, processors interested in monitoring critical control points in the slaughter process could potentially use the R-mATP assay to monitor microbiological prevention and intervention procedures for minimizing carcass contamination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA