Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 58(5): 270-283, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30536896

RESUMO

Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single-stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.


Assuntos
Sítios Frágeis do Cromossomo , Fragilidade Cromossômica , Replicação do DNA , DNA/genética , Animais , DNA/química , Humanos
2.
Adv Exp Med Biol ; 1042: 489-526, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29357071

RESUMO

Chromosome fragile sites are a fascinating cytogenetic phenomenon now widely implicated in a slew of human diseases ranging from neurological disorders to cancer. Yet, the paths leading to these revelations were far from direct, and the number of fragile sites that have been molecularly cloned with known disease-associated genes remains modest. Moreover, as more fragile sites were being discovered, research interests in some of the earliest discovered fragile sites ebbed away, leaving a number of unsolved mysteries in chromosome biology. In this review we attempt to recount some of the early discoveries of fragile sites and highlight those phenomena that have eluded intense scrutiny but remain extremely relevant in our understanding of the mechanisms of chromosome fragility. We then survey the literature for disease association for a comprehensive list of fragile sites. We also review recent studies addressing the underlying cause of chromosome fragility while highlighting some ongoing debates. We report an observed enrichment for R-loop forming sequences in fragile site-associated genes than genomic average. Finally, we will leave the reader with some lingering questions to provoke discussion and inspire further scientific inquiries.


Assuntos
Sítios Frágeis do Cromossomo/fisiologia , Fragilidade Cromossômica/genética , Animais , Quebras de DNA de Cadeia Dupla , Genoma/genética , Instabilidade Genômica/genética , Humanos , Neoplasias/genética , Doenças do Sistema Nervoso/genética
3.
Front Genet ; 13: 985975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36468036

RESUMO

Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.

4.
Cancers (Basel) ; 12(4)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260317

RESUMO

Double strand break (DSB) repair mechanisms guard genome integrity and their deterioration causes genomic instability. Common and rare fragile sites (CFS and RFS, respectively) are particularly vulnerable to instability, and there is an inverse correlation between fragile site (FS) expression and DSB repair protein levels. Upon DSB repair dysfunction, genes residing at these sites are at greater risk of deregulation compared to genes located at non-FS. In this regard, it remains enigmatic why the incidence of miRNA genes at FS is higher compared to non-FS. Herein, using bioinformatics, we examined whether miRNA genes localized at FS inhibit components of DSB repair pathways and assessed their effects on cancer. We show that such miRNAs over-accumulate in RFS, and that FRAXA, which is expressed in Fragile X syndrome, is a conserved hotspot for miRNAs inhibiting DSB repair. Axes of FRAXA-residing miRNAs/DSB repair targets affect survival in a cancer type-specific manner. Moreover, copy number variations in the region encompassing these miRNA genes discriminate survival between male and female patients. Given that, thus far, only CFS have been considered relevant for carcinogenesis, our data are the first to associate RFS with cancer, through the impairment of DSB repair by the FRAXA-residing miRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA