Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.591
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(21): 4546-4566.e27, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37769657

RESUMO

Neutrophils are abundant immune cells in the circulation and frequently infiltrate tumors in substantial numbers. However, their precise functions in different cancer types remain incompletely understood, including in the brain microenvironment. We therefore investigated neutrophils in tumor tissue of glioma and brain metastasis patients, with matched peripheral blood, and herein describe the first in-depth analysis of neutrophil phenotypes and functions in these tissues. Orthogonal profiling strategies in humans and mice revealed that brain tumor-associated neutrophils (TANs) differ significantly from blood neutrophils and have a prolonged lifespan and immune-suppressive and pro-angiogenic capacity. TANs exhibit a distinct inflammatory signature, driven by a combination of soluble inflammatory mediators including tumor necrosis factor alpha (TNF-ɑ) and Ceruloplasmin, which is more pronounced in TANs from brain metastasis versus glioma. Myeloid cells, including tumor-associated macrophages, emerge at the core of this network of pro-inflammatory mediators, supporting the concept of a critical myeloid niche regulating overall immune suppression in human brain tumors.

2.
Cell ; 177(6): 1632-1648.e20, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150626

RESUMO

The scaling of organelles with cell size is thought to be exclusive to eukaryotes. Here, we demonstrate that similar scaling relationships hold for the bacterial nucleoid. Despite the absence of a nuclear membrane, nucleoid size strongly correlates with cell size, independent of changes in DNA amount and across various nutrient conditions. This correlation is observed in diverse bacteria, revealing a near-constant ratio between nucleoid and cell size for a given species. As in eukaryotes, the nucleocytoplasmic ratio in bacteria varies greatly among species. This spectrum of nucleocytoplasmic ratios is independent of genome size, and instead it appears linked to the average population cell size. Bacteria with different nucleocytoplasmic ratios have a cytoplasm with different biophysical properties, impacting ribosome mobility and localization. Together, our findings identify new organizational principles and biophysical features of bacterial cells, implicating the nucleocytoplasmic ratio and cell size as determinants of the intracellular organization of translation.


Assuntos
Estruturas Celulares/metabolismo , Estruturas Celulares/fisiologia , Biossíntese de Proteínas/fisiologia , Bactérias/genética , Proteínas de Bactérias/metabolismo , Tamanho Celular , Citoplasma/fisiologia , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Organelas/metabolismo , Células Procarióticas/metabolismo , Células Procarióticas/fisiologia , Ribossomos/metabolismo
3.
Cell ; 176(4): 805-815.e8, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639102

RESUMO

Early embryogenesis is accompanied by reductive cell divisions requiring that subcellular structures adapt to a range of cell sizes. The interphase nucleus and mitotic spindle scale with cell size through both physical and biochemical mechanisms, but control systems that coordinately scale intracellular structures are unknown. We show that the nuclear transport receptor importin α is modified by palmitoylation, which targets it to the plasma membrane and modulates its binding to nuclear localization signal (NLS)-containing proteins that regulate nuclear and spindle size in Xenopus egg extracts. Reconstitution of importin α targeting to the outer boundary of extract droplets mimicking cell-like compartments recapitulated scaling relationships observed during embryogenesis, which were altered by inhibitors that shift levels of importin α palmitoylation. Modulation of importin α palmitoylation in human cells similarly affected nuclear and spindle size. These experiments identify importin α as a conserved surface area-to-volume sensor that scales intracellular structures to cell size.


Assuntos
Divisão Celular/fisiologia , alfa Carioferinas/metabolismo , alfa Carioferinas/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Tamanho Celular , Citoplasma/metabolismo , Lipoilação , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Óvulo/citologia , Fuso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
4.
Cell ; 177(6): 1649-1661.e9, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31080069

RESUMO

Current machine learning techniques enable robust association of biological signals with measured phenotypes, but these approaches are incapable of identifying causal relationships. Here, we develop an integrated "white-box" biochemical screening, network modeling, and machine learning approach for revealing causal mechanisms and apply this approach to understanding antibiotic efficacy. We counter-screen diverse metabolites against bactericidal antibiotics in Escherichia coli and simulate their corresponding metabolic states using a genome-scale metabolic network model. Regression of the measured screening data on model simulations reveals that purine biosynthesis participates in antibiotic lethality, which we validate experimentally. We show that antibiotic-induced adenine limitation increases ATP demand, which elevates central carbon metabolism activity and oxygen consumption, enhancing the killing effects of antibiotics. This work demonstrates how prospective network modeling can couple with machine learning to identify complex causal mechanisms underlying drug efficacy.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Adenina/metabolismo , Biologia Computacional/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Escherichia coli/metabolismo , Aprendizado de Máquina , Redes e Vias Metabólicas/imunologia , Modelos Teóricos , Purinas/metabolismo
5.
Annu Rev Genet ; 56: 165-185, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35977407

RESUMO

Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.


Assuntos
Ploidias , Divisão Celular/genética , Ciclo Celular/genética , Citoplasma/genética , Tamanho Celular
6.
Mol Cell ; 81(18): 3803-3819.e7, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547240

RESUMO

Mitochondrial dynamics regulated by mitochondrial fusion and fission maintain mitochondrial functions, whose alterations underline various human diseases. Here, we show that inositol is a critical metabolite directly restricting AMPK-dependent mitochondrial fission independently of its classical mode as a precursor for phosphoinositide generation. Inositol decline by IMPA1/2 deficiency elicits AMPK activation and mitochondrial fission without affecting ATP level, whereas inositol accumulation prevents AMPK-dependent mitochondrial fission. Metabolic stress or mitochondrial damage causes inositol decline in cells and mice to elicit AMPK-dependent mitochondrial fission. Inositol directly binds to AMPKγ and competes with AMP for AMPKγ binding, leading to restriction of AMPK activation and mitochondrial fission. Our study suggests that the AMP/inositol ratio is a critical determinant for AMPK activation and establishes a model in which AMPK activation requires inositol decline to release AMPKγ for AMP binding. Hence, AMPK is an inositol sensor, whose inactivation by inositol serves as a mechanism to restrict mitochondrial fission.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Inositol/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Linhagem Celular , Humanos , Inositol/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Células PC-3 , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Estresse Fisiológico/fisiologia
7.
Proc Natl Acad Sci U S A ; 121(36): e2319104121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39186647

RESUMO

Hatching failure affects up to 77% of eggs laid by threatened bird species, yet the true prevalence and drivers of egg fertilization failure versus embryo mortality as underlying mechanisms of hatching failure are unknown. Here, using ten years of data comprising 4,371 eggs laid by a population of a threatened bird, the hihi (Notiomystis cincta), we investigate the relative importance of infertility and embryo death as drivers of hatching failure and explore population-level factors associated with them. We show that of the 1,438 eggs that failed to hatch (33% of laid eggs) between 2010 and 2020, 83% failed due to embryo mortality, with the majority failing in the early stages of embryonic development. In the most comprehensive estimates of infertility rates in a wild bird population to date, we find that fertilization failure accounts for around 17% of hatching failure overall and is more prevalent in years where the population is smaller and more male biased. Male embryos are more likely to die during early development than females, but we find no overall effect of sex on the successful development of embryos. Offspring fathered by within-pair males have significantly higher inbreeding levels than extra-pair offspring; however, we find no effect of inbreeding nor extra-pair paternity on embryo mortality. Accurately distinguishing between infertility and embryo mortality in this study provides unique insight into the underlying causes of reproductive failure over a long-term scale and reveals the complex risks of small population sizes to the reproduction of threatened species.


Assuntos
Espécies em Perigo de Extinção , Reprodução , Animais , Feminino , Masculino , Reprodução/fisiologia , Endogamia , Infertilidade/epidemiologia , Infertilidade/veterinária , Aves , Fertilização
8.
Proc Natl Acad Sci U S A ; 121(35): e2318159121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39172781

RESUMO

In many physical situations in which many-body assemblies exist at temperature T, a characteristic quantum-mechanical time scale of approximately [Formula: see text] can be identified in both theory and experiment, leading to speculation that it may be the shortest meaningful time in such circumstances. This behavior can be investigated by probing the scattering rate of electrons in a broad class of materials often referred to as "strongly correlated metals". It is clear that in some cases only electron-electron scattering can be its cause, while in others it arises from high-temperature scattering of electrons from quantized lattice vibrations, i.e., phonons. In metallic oxides, which are among the most studied materials, analysis of electrical transport does not satisfactorily identify the relevant scattering mechanism at "high" temperatures near room temperature. We therefore employ a contactless optical method to measure thermal diffusivity in two Ru-based layered perovskites, Sr3Ru2O7 and Sr2RuO4, and use the measurements to extract the dimensionless Lorenz ratio. By comparing our results to the literature data on both conventional and unconventional metals, we show how the analysis of high-temperature thermal transport can both give important insight into dominant scattering mechanisms and be offered as a stringent test of theories attempting to explain anomalous scattering.

9.
Proc Natl Acad Sci U S A ; 121(34): e2401638121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133841

RESUMO

This study analyzes H2O and HDO vertical profiles in the Venus mesosphere using Venus Express/Solar Occultation in the InfraRed data. The findings show increasing H2O and HDO volume mixing ratios with altitude, with the D/H ratio rising significantly from 0.025 at ~70 km to 0.24 at ~108 km. This indicates an increase from 162 to 1,519 times the Earth's ratio within 40 km. The study explores two hypotheses for these results: isotopic fractionation from photolysis of H2O over HDO or from phase change processes. The latter, involving condensation and evaporation of sulfuric acid aerosols, as suggested by previous authors [X. Zhang et al., Nat. Geosci. 3, 834-837 (2010)], aligns more closely with the rapid changes observed. Vertical transport computations for H2O, HDO, and aerosols show water vapor downwelling and aerosols upwelling. We propose a mechanism where aerosols form in the lower mesosphere due to temperatures below the water condensation threshold, leading to deuterium-enriched aerosols. These aerosols ascend, evaporate at higher temperatures, and release more HDO than H2O, which are then transported downward. Moreover, this cycle may explain the SO2 increase in the upper mesosphere observed above 80 km. The study highlights two crucial implications. First, altitude variation is critical to determining the Venus deuterium and hydrogen reservoirs. Second, the altitude-dependent increase of the D/H ratio affects H and D escape rates. The photolysis of H2O and HDO at higher altitudes releases more D, influencing long-term D/H evolution. These findings suggest that evolutionary models should incorporate altitude-dependent processes for accurate D/H fractionation predictions.

10.
Proc Natl Acad Sci U S A ; 121(22): e2321294121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771872

RESUMO

Males and females often have different roles in reproduction, although the origin of these differences has remained controversial. Explaining the enigmatic reversed sex roles where males sacrifice their mating potential and provide full parental care is a particularly long-standing challenge in evolutionary biology. While most studies focused on ecological factors as the drivers of sex roles, recent research highlights the significance of social factors such as the adult sex ratio. To disentangle these propositions, here, we investigate the additive and interactive effects of several ecological and social factors on sex role variation using shorebirds (sandpipers, plovers, and allies) as model organisms that provide the full spectrum of sex role variation including some of the best-known examples of sex-role reversal. Our results consistently show that social factors play a prominent role in driving sex roles. Importantly, we show that reversed sex roles are associated with both male-skewed adult sex ratios and high breeding densities. Furthermore, phylogenetic path analyses provide general support for sex ratios driving sex role variations rather than being a consequence of sex roles. Together, these important results open future research directions by showing that different mating opportunities of males and females play a major role in generating the evolutionary diversity of sex roles, mating system, and parental care.


Assuntos
Evolução Biológica , Razão de Masculinidade , Comportamento Sexual Animal , Meio Social , Animais , Feminino , Masculino , Comportamento Sexual Animal/fisiologia , Reprodução/fisiologia , Charadriiformes/fisiologia , Filogenia , Aves/fisiologia , Papel de Gênero
11.
Am J Hum Genet ; 110(1): 146-160, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608681

RESUMO

Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes. To delineate how cellular consequences of NAE1 deficiency would lead to the clinical phenotype, we focused primarily on the rarest phenotypic features, based on the assumption that these would best reflect the pathophysiology at stake. Two of the rarest features, neuronal loss and lymphopenia worsening during infections, suggest that NAE1 is required during cellular stress caused by infections to protect against cell death. In support, we found that stressing the proteasome system with MG132-requiring upregulation of neddylation to restore proteasomal function and proteasomal stress-led to increased cell death in fibroblasts of individuals with NAE1 genetic variants. Additionally, we found decreased lymphocyte counts after CD3/CD28 stimulation and decreased NF-κB translocation in individuals with NAE1 variants. The rarest phenotypic feature-delayed closure of the ischiopubic rami-correlated with significant downregulation of RUN2X and SOX9 expression in transcriptomic data of fibroblasts. Both genes are involved in the pathophysiology of ischiopubic hypoplasia. Thus, we show that NAE1 plays a major role in (skeletal) development and cellular homeostasis during stress. Our approach suggests that a focus on rare phenotypic features is able to provide significant pathophysiological insights in diseases caused by mutations in genes with pleiotropic effects.


Assuntos
Deficiência Intelectual , Linfopenia , Humanos , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Transdução de Sinais/genética , Deficiência Intelectual/genética , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfopenia/genética
12.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436559

RESUMO

A wide range of approaches can be used to detect micro RNA (miRNA)-target gene pairs (mTPs) from expression data, differing in the ways the gene and miRNA expression profiles are calculated, combined and correlated. However, there is no clear consensus on which is the best approach across all datasets. Here, we have implemented multiple strategies and applied them to three distinct rare disease datasets that comprise smallRNA-Seq and RNA-Seq data obtained from the same samples, obtaining mTPs related to the disease pathology. All datasets were preprocessed using a standardized, freely available computational workflow, DEG_workflow. This workflow includes coRmiT, a method to compare multiple strategies for mTP detection. We used it to investigate the overlap of the detected mTPs with predicted and validated mTPs from 11 different databases. Results show that there is no clear best strategy for mTP detection applicable to all situations. We therefore propose the integration of the results of the different strategies by selecting the one with the highest odds ratio for each miRNA, as the optimal way to integrate the results. We applied this selection-integration method to the datasets and showed it to be robust to changes in the predicted and validated mTP databases. Our findings have important implications for miRNA analysis. coRmiT is implemented as part of the ExpHunterSuite Bioconductor package available from https://bioconductor.org/packages/ExpHunterSuite.


Assuntos
MicroRNAs , Consenso , Bases de Dados Factuais , MicroRNAs/genética , Razão de Chances , RNA-Seq
13.
Mol Cell Proteomics ; 23(1): 100694, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097181

RESUMO

Multiplex proteomics using isobaric labeling tags has emerged as a powerful tool for the simultaneous relative quantification of peptides and proteins across multiple experimental conditions. However, the quantitative accuracy of the approach is largely compromised by ion interference, a phenomenon that causes fold changes to appear compressed. The degree of compression is generally unknown, and the contributing factors are poorly understood. In this study, we thoroughly characterized ion interference at the MS2 level using a defined two-proteome experimental system with known ground-truth. We discovered remarkably poor agreement between the apparent precursor purity in the isolation window and the actual level of observed reporter ion interference in MS2 scans-a discrepancy that we found resolved by considering cofragmentation of peptide ions hidden within the spectral "noise" of the MS1 isolation window. To address this issue, we developed a regression modeling strategy to accurately predict reporter ion interference in any dataset. Finally, we demonstrate the utility of our procedure for improved fold change estimation and unbiased PTM site-to-protein normalization. All computational tools and code required to apply this method to any MS2 TMT dataset are documented and freely available.


Assuntos
Peptídeos , Proteômica , Proteômica/métodos , Proteoma/metabolismo , Íons
14.
Mol Cell Proteomics ; 23(3): 100738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364992

RESUMO

Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Gravitropismo , Biotina/metabolismo , Vento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Ligases/metabolismo , Calmodulina/metabolismo
15.
Dev Biol ; 509: 85-96, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387487

RESUMO

Genome duplications and ploidy transitions have occurred in nearly every major taxon of eukaryotes, but they are far more common in plants than in animals. Due to the conservation of the nuclear:cytoplasmic volume ratio increased DNA content results in larger cells. In plants, polyploid organisms are larger than diploids as cell number remains relatively constant. Conversely, vertebrate body size does not correlate with cell size and ploidy as vertebrates compensate for increased cell size to maintain tissue architecture and body size. This has historically been explained by a simple reduction in cell number that matches the increase in cell size maintaining body size as ploidy increases, but here we show that the compensatory mechanisms that maintain body size in triploid zebrafish are tissue-specific: A) erythrocytes respond in the classical pattern with a reduced number of larger erythrocytes in circulation, B) muscle, a tissue comprised of polynucleated muscle fibers, compensates by reducing the number of larger nuclei such that myofiber and myotome size in unaffected by ploidy, and C) vascular tissue compensates by thickening blood vessel walls, possibly at the expense of luminal diameter. Understanding the physiological implications of ploidy on tissue function requires a detailed description of the specific mechanisms of morphological compensation occurring in each tissue to understand how ploidy changes affect development and physiology.


Assuntos
Poliploidia , Peixe-Zebra , Animais , Peixe-Zebra/genética , Ploidias , Tamanho Celular , Tamanho Corporal
16.
Genet Epidemiol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654400

RESUMO

Multigene panel testing now allows efficient testing of many cancer susceptibility genes leading to a larger number of mutation carriers being identified. They need to be counseled about their cancer risk conferred by the specific gene mutation. An important cancer susceptibility gene is PALB2. Multiple studies reported risk estimates for breast cancer (BC) conferred by pathogenic variants in PALB2. Due to the diverse modalities of reported risk estimates (age-specific risk, odds ratio, relative risk, and standardized incidence ratio) and effect sizes, a meta-analysis combining these estimates is necessary to accurately counsel patients with this mutation. However, this is not trivial due to heterogeneity of studies in terms of study design and risk measure. We utilized a recently proposed Bayesian random-effects meta-analysis method that can synthesize estimates from such heterogeneous studies. We applied this method to combine estimates from 12 studies on BC risk for carriers of pathogenic PALB2 mutations. The estimated overall (meta-analysis-based) risk of BC is 12.80% (6.11%-22.59%) by age 50 and 48.47% (36.05%-61.74%) by age 80. Pathogenic mutations in PALB2 makes women more susceptible to BC. Our risk estimates can help clinically manage patients carrying pathogenic variants in PALB2.

17.
Plant J ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072887

RESUMO

Stomatal pores in plant leaves mediate CO2 uptake for photosynthesis and water loss via transpiration. Altered stomatal density can affect plant photosynthetic capacity, water use efficiency, and growth, potentially providing either benefits or drawbacks depending on the environment. Here we explore, at different air humidity regimes, gas exchange, stomatal anatomy, and growth of Arabidopsis lines designed to combine increased stomatal density (epf1, epf2) with high stomatal sensitivity (ht1-2, cyp707a1/a3). We show that the stomatal density and sensitivity traits combine as expected: higher stomatal density increases stomatal conductance, whereas the effect is smaller in the high stomatal sensitivity mutant backgrounds than in the epf1epf2 double mutant. Growth under low air humidity increases plant stomatal ratio with relatively more stomata allocated to the adaxial epidermis. Low relative air humidity and high stomatal density both independently impair plant growth. Higher evaporative demand did not punish increased stomatal density, nor did inherently low stomatal conductance provide any protection against low relative humidity. We propose that the detrimental effects of high stomatal density on plant growth at a young age are related to the cost of producing stomata; future experiments need to test if high stomatal densities might pay off in later life stages.

18.
Am J Hum Genet ; 109(12): 2163-2177, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413997

RESUMO

Recommendations from the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) for interpreting sequence variants specify the use of computational predictors as "supporting" level of evidence for pathogenicity or benignity using criteria PP3 and BP4, respectively. However, score intervals defined by tool developers, and ACMG/AMP recommendations that require the consensus of multiple predictors, lack quantitative support. Previously, we described a probabilistic framework that quantified the strengths of evidence (supporting, moderate, strong, very strong) within ACMG/AMP recommendations. We have extended this framework to computational predictors and introduce a new standard that converts a tool's scores to PP3 and BP4 evidence strengths. Our approach is based on estimating the local positive predictive value and can calibrate any computational tool or other continuous-scale evidence on any variant type. We estimate thresholds (score intervals) corresponding to each strength of evidence for pathogenicity and benignity for thirteen missense variant interpretation tools, using carefully assembled independent data sets. Most tools achieved supporting evidence level for both pathogenic and benign classification using newly established thresholds. Multiple tools reached score thresholds justifying moderate and several reached strong evidence levels. One tool reached very strong evidence level for benign classification on some variants. Based on these findings, we provide recommendations for evidence-based revisions of the PP3 and BP4 ACMG/AMP criteria using individual tools and future assessment of computational methods for clinical interpretation.


Assuntos
Calibragem , Humanos , Consenso , Escolaridade , Virulência
19.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35608054

RESUMO

One of the key events during spermiogenesis is the hypercondensation of chromatin by substitution of the majority of histones by protamines. In humans and mice, protamine 1 (PRM1/Prm1) and protamine 2 (PRM2/Prm2) are expressed in a species-specific ratio. Using CRISPR-Cas9-mediated gene editing, we generated Prm1-deficient mice and demonstrated that Prm1+/- mice were subfertile, whereas Prm1-/- mice were infertile. Prm1-/- and Prm2-/- sperm showed high levels of reactive oxygen species-mediated DNA damage and increased histone retention. In contrast, Prm1+/- sperm displayed only moderate DNA damage. The majority of Prm1+/- sperm were CMA3 positive, indicating protamine-deficient chromatin, although this was not the result of increased histone retention in Prm1+/- sperm. However, sperm from Prm1+/- and Prm1-/- mice contained high levels of incompletely processed PRM2. Furthermore, the PRM1:PRM2 ratio was skewed from 1:2 in wild type to 1:5 in Prm1+/- animals. Our results reveal that PRM1 is required for proper PRM2 processing to produce mature PRM2, which, together with PRM1, is able to hypercondense DNA. Thus, the species-specific PRM1:PRM2 ratio has to be precisely controlled in order to retain full fertility.


Assuntos
Astenozoospermia , Infertilidade Masculina , Protaminas/metabolismo , Animais , Cromatina , Histonas/genética , Infertilidade Masculina/genética , Masculino , Camundongos , Protaminas/genética , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo
20.
EMBO Rep ; 24(4): e55548, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36794623

RESUMO

Mechanisms underlying the depletion of NAD+ and accumulation of reactive oxygen species (ROS) in aging and age-related disorders remain poorly defined. We show that reverse electron transfer (RET) at mitochondrial complex I, which causes increased ROS production and NAD+ to NADH conversion and thus lowered NAD+ /NADH ratio, is active during aging. Genetic or pharmacological inhibition of RET decreases ROS production and increases NAD+ /NADH ratio, extending the lifespan of normal flies. The lifespan-extending effect of RET inhibition is dependent on NAD+ -dependent Sirtuin, highlighting the importance of NAD+ /NADH rebalance, and on longevity-associated Foxo and autophagy pathways. RET and RET-induced ROS and NAD+ /NADH ratio changes are prominent in human induced pluripotent stem cell (iPSC) model and fly models of Alzheimer's disease (AD). Genetic or pharmacological inhibition of RET prevents the accumulation of faulty translation products resulting from inadequate ribosome-mediated quality control, rescues relevant disease phenotypes, and extends the lifespan of Drosophila and mouse AD models. Deregulated RET is therefore a conserved feature of aging, and inhibition of RET may open new therapeutic opportunities in the context of aging and age-related diseases including AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Humanos , NAD , Espécies Reativas de Oxigênio/metabolismo , Elétrons , Células-Tronco Pluripotentes Induzidas/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Drosophila/genética , Drosophila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA