RESUMO
Despite the prevalence of visuomotor transformations in our motor skills, their mechanisms remain incompletely understood, especially when imagery actions are considered such as mentally picking up a cup or pressing a button. Here, we used a stimulus-response task to directly compare the visuomotor transformation underlying overt and imagined button presses. Electroencephalographic activity was recorded while participants responded to highlights of the target button while ignoring the second, non-target button. Movement-related potentials (MRPs) and event-related desynchronization occurred for both overt movements and motor imagery (MI), with responses present even for non-target stimuli. Consistent with the activity accumulation model where visual stimuli are evaluated and transformed into the eventual motor response, the timing of MRPs matched the response time on individual trials. Activity-accumulation patterns were observed for MI, as well. Yet, unlike overt movements, MI-related MRPs were not lateralized, which appears to be a neural marker for the distinction between generating a mental image and transforming it into an overt action. Top-down response strategies governing this hemispheric specificity should be accounted for in future research on MI, including basic studies and medical practice.
Assuntos
Córtex Motor , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Córtex Motor/fisiologia , Imaginação/fisiologia , Potenciais Evocados/fisiologia , Eletroencefalografia/métodos , Movimento/fisiologia , Potencial Evocado Motor/fisiologiaRESUMO
Post-movement beta synchronization is an increase of beta power relative to baseline, which commonly used to represent the status quo of the motor system. However, its functional role to the subsequent voluntary motor output and potential electrophysiological significance remain largely unknown. Here, we examined the reaction time of a Go/No-Go task of index finger tapping which performed at the phases of power baseline and post-movement beta synchronization peak induced by index finger abduction movements at different speeds (ballistic/self-paced) in 13 healthy subjects. We found a correlation between the post-movement beta synchronization and reaction time that larger post-movement beta synchronization prolonged the reaction time during Go trials. To probe the electrophysiological significance of post-movement beta synchronization, we assessed intracortical inhibitory measures probably involving GABAB (long-interval intracortical inhibition) and GABAA (short-interval intracortical inhibition) receptors in beta baseline and post-movement beta synchronization peak induced by index finger abduction movements at different speeds. We found that short-interval intracortical inhibition but not long-interval intracortical inhibition increased in post-movement beta synchronization peak compared with that in the power baseline, and was negatively correlated with the change of post-movement beta synchronization peak value. These novel findings indicate that the post-movement beta synchronization is related to forward model updating, with high beta rebound predicting longer time for the preparation of subsequent movement by inhibitory neural pathways of GABAA.
Assuntos
Potencial Evocado Motor , Movimento , Humanos , Potencial Evocado Motor/fisiologia , Movimento/fisiologia , Tempo de Reação/fisiologia , Inibição Psicológica , Inibição Neural/fisiologiaRESUMO
Most prior research has focused on characterizing averages in cognition, brain characteristics, or behavior, and attempting to predict differences in these averages among individuals. However, this overwhelming focus on mean levels may leave us with an incomplete picture of what drives individual differences in behavioral phenotypes by ignoring the variability of behavior around an individual's mean. In particular, enhanced white matter (WM) structural microstructure has been hypothesized to support consistent behavioral performance by decreasing Gaussian noise in signal transfer. Conversely, lower indices of WM microstructure are associated with greater within-subject variance in the ability to deploy performance-related resources, especially in clinical populations. We tested a mechanistic account of the "neural noise" hypothesis in a large adult lifespan cohort (Cambridge Centre for Ageing and Neuroscience) with over 2500 adults (ages 18-102; 1508 female; 1173 male; 2681 behavioral sessions; 708 MRI scans) using WM fractional anisotropy to predict mean levels and variability in reaction time performance on a simple behavioral task using a dynamic structural equation model. By modeling robust and reliable individual differences in within-person variability, we found support for a neural noise hypothesis (Kail, 1997), with lower fractional anisotropy predicted individual differences in separable components of behavioral performance estimated using dynamic structural equation model, including slower mean responses and increased variability. These effects remained when including age, suggesting consistent effects of WM microstructure across the adult lifespan unique from concurrent effects of aging. Crucially, we show that variability can be reliably separated from mean performance using advanced modeling tools, enabling tests of distinct hypotheses for each component of performance.SIGNIFICANCE STATEMENT Human cognitive performance is defined not just by the long-run average, but trial-to-trial variability around that average. However, investigations of cognitive abilities and changes during aging have largely ignored this variability component of behavior. We provide evidence that white matter (WM) microstructure predicts individual differences in mean performance and variability in a sample spanning the adult lifespan (18-102). Unlike prior studies of cognitive performance and variability, we modeled variability directly and distinct from mean performance using a dynamic structural equation model, which allows us to decouple variability from mean performance and other complex features of performance (e.g., autoregression). The effects of WM were robust above the effect of age, highlighting the role of WM in promoting fast and consistent performance.
Assuntos
Substância Branca , Adulto , Humanos , Masculino , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Longevidade , Tempo de Reação/fisiologia , Imagem de Tensor de Difusão , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cognição/fisiologia , Envelhecimento/fisiologiaRESUMO
Acute cardiovascular physical exercise improves cognitive performance, as evidenced by a reduction in reaction time (RT). However, the mechanistic understanding of how this occurs is elusive and has not been rigorously investigated in humans. Here, using positron emission tomography (PET) with [11 C]raclopride, in a multi-experiment study we investigated whether acute exercise releases endogenous dopamine (DA) in the brain. We hypothesized that acute exercise augments the brain DA system, and that RT improvement is correlated with this endogenous DA release. The PET study (Experiment 1: n = 16) demonstrated that acute physical exercise released endogenous DA, and that endogenous DA release was correlated with improvements in RT of the Go/No-Go task. Thereafter, using two electrical muscle stimulation (EMS) studies (Experiments 2 and 3: n = 18 and 22 respectively), we investigated what triggers RT improvement. The EMS studies indicated that EMS with moderate arm cranking improved RT, but RT was not improved following EMS alone or EMS combined with no load arm cranking. The novel mechanistic findings from these experiments are: (1) endogenous DA appears to be an important neuromodulator for RT improvement and (2) RT is only altered when exercise is associated with central signals from higher brain centres. Our findings explain how humans rapidly alter their behaviour using neuromodulatory systems and have significant implications for promotion of cognitive health. KEY POINTS: Acute cardiovascular exercise improves cognitive performance, as evidenced by a reduction in reaction time (RT). However, the mechanistic understanding of how this occurs is elusive and has not been rigorously investigated in humans. Using the neurochemical specificity of [11 C]raclopride positron emission tomography, we demonstrated that acute supine cycling released endogenous dopamine (DA), and that this release was correlated with improved RT. Additional electrical muscle stimulation studies demonstrated that peripherally driven muscle contractions (i.e. exercise) were insufficient to improve RT. The current study suggests that endogenous DA is an important neuromodulator for RT improvement, and that RT is only altered when exercise is associated with central signals from higher brain centres.
Assuntos
Dopamina , Tomografia por Emissão de Pósitrons , Humanos , Racloprida , Tempo de Reação , Tomografia por Emissão de Pósitrons/métodos , Exercício Físico , NeurotransmissoresRESUMO
Corticospinal excitability (CSE) increases prior to a voluntary contraction; however, the relative contributions of premotor cortical and spinal mechanisms are poorly understood. It is unknown whether the intended voluntary contractile rate affects CSE. Eighteen young, healthy participants (nine females) completed isometric elbow flexion contractions targeting 50% maximal voluntary contraction (MVC) torque, at either fast (fast as possible) or slow (25% MVC/s) contractile rates. Participants were cued to contract with warning (red) and "GO" (green) visual signals. Magnetic and electric stimulations were applied to elicit motor evoked potentials (MEPs), cervicomedullary evoked potentials (CMEPs), and M-waves, in the surface electromyogram (EMG) recorded over the biceps brachii. MEPs and CMEPs were collected at 0, 25, 50 and 75% premotor reaction time (RT - defined as the time between the "GO" cue and onset of biceps brachii EMG) and compared to a resting baseline. MEP amplitude was greater than baseline at 75% RT (p=0.009), and CMEP amplitude was significantly increased at all RT points relative to baseline (p≤0.001). However, there were no differences in MEP and CMEP amplitudes when compared between fast and slow conditions (p≥0.097). Normalized to the CMEP, there was no difference in MEP amplitude from baseline in either contractile condition (p≥0.264). These results indicate that increased premotor CSE is a spinally-mediated response. Furthermore, premotor CSE is not influenced by the intended voluntary contractile rate. CMEP amplitudes were larger for females than males within the premotor RT period (p=0.038), demonstrating that premotor spinal excitability responses may be influenced by sex.
RESUMO
Reaching movements can be redirected during their progress to handle unexpected visual changes, such as a change in target location. It is important to know when these redirections start, i.e., the online reaction time (oRT), but this information is not readily evident since redirections are embedded within a time-varying baseline movement that differs from trial to trial. The one previous study that evaluated the performance of different oRT identification methods utilized simulated redirections with the exact same onset, rather than a range of onsets as would be typically encountered. We addressed this gap by utilizing batches of "hybrid" trials with temporal spread in their oRTs. Each hybrid trial combined a sampled baseline movement with an idealized corrective response. Two new methods had the most accurate identification of online reaction times: 1) a threshold-aligned grand mean regression, and 2) a template-based approach we term the canonical correction search. The threshold-aligned grand mean regression is simple to implement and effective. The canonical correction search is a more complex procedure but arguably better linked to the underlying response. Applying the two methods to a published dataset revealed more delayed oRTs than was previously reported along with new information such as the width of oRT distributions. Taken together, our results demonstrate the utility of two new methods for dissecting corrective action from ongoing movement.NEW & NOTEWORTHY Advancing our understanding of visual feedback control requires methods that accurately identify the onset of corrective action. We developed a modified regression approach and a template-based approach to identify the online reaction time of single-reaching movements. Both outperform previous methods when challenged by temporal jitter in the response onset and increased background noise.
Assuntos
Desempenho Psicomotor , Tempo de Reação , Humanos , Tempo de Reação/fisiologia , Desempenho Psicomotor/fisiologia , Masculino , Adulto , Feminino , Movimento/fisiologia , Adulto JovemRESUMO
The ability to initiate an action quickly when needed and the ability to cancel an impending action are both fundamental to action control. It is often presumed that they are qualitatively distinct processes, yet they have largely been studied in isolation and little is known about how they relate to one another. Comparing previous experimental results shows a similar time course for response initiation and response inhibition. However, the exact time course varies widely depending on experimental conditions, including the frequency of different trial types and the urgency to respond. For example, in the stop-signal task, where both action initiation and action inhibition are involved and could be compared, action inhibition is typically found to be much faster. However, this apparent difference is likely due to there being much greater urgency to inhibit an action than to initiate one in order to avoid failing at the task. This asymmetry in the urgency between action initiation and action inhibition makes it impossible to compare their relative time courses in a single task. Here, we demonstrate that when action initiation and action inhibition are measured separately under conditions that are matched as closely as possible, their speeds are not distinguishable and are positively correlated across participants. Our results raise the possibility that action initiation and action inhibition may not necessarily be qualitatively distinct processes but may instead reflect complementary outcomes of a single decision process determining whether or not to act.NEW & NOTEWORTHY The time courses of initiating an action and canceling an action have largely been studied in isolation, and little is known about their relationship. Here, we show that when measured under comparable conditions the speeds of action initiation and action inhibition are the same. This finding raises the possibility that these two functions may be more closely related than previously assumed, with potentially important implications for their underlying neural basis.
Assuntos
Cognição , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Inibição PsicológicaRESUMO
The five-choice serial reaction time task (5CSRTT) is a test of attention that provides a well-validated ancillary measure of impulsive action, measured by premature responses. The task has been adapted for mice in touchscreen operant boxes, which is thought to offer improved test-retest reliability. Few studies have assessed the long-term stability of performance, including premature responding in this version of the task. We used the touchscreen 5CSRTT to conduct longitudinal testing of stability of premature responding following repeated behavioral and pharmacological manipulations. Male C57BL/6J mice were trained on a baseline version of the 5CSRTT. They were then tested on versions of the task in which the stimulus duration was reduced, and inter-trial intervals were elongated or varied within-session. Premature responding was subsequently tested following administration of pharmacological agents known to bi-directionally affect attention and impulsive action-cocaine, atomoxetine, and yohimbine. Mice were lastly re-tested 6 months later using the 5CSRTT with elongated inter-trial intervals. A reduced stimulus duration impacted attention, with reduced accuracy and increased omissions, but had no effect on premature responding. Both elongating and varying the inter-trial interval within-session increased premature responses. Mice showed similar and stable levels of increased premature responding 6 months later. Cocaine increased premature responding, though less than previously reported in rats. Atomoxetine reduced premature responding. Yohimbine had no effect on premature responding in the baseline task but decreased premature responding when tested using an elongated inter-trial interval. Overall, these results highlight that the touch screen adaptation of the 5CSRTT is an effective method for longitudinal testing of attention and impulsive action and remains sensitive to performance changes arising from repeated pharmacological and behavioral challenges.
RESUMO
The cholinergic system plays a key role in motor function, but whether pharmacological modulation of cholinergic activity affects motor sequence learning is unknown. The acetylcholine receptor antagonist biperiden, an established treatment in movement disorders, reduces attentional modulation, but whether it influences motor sequence learning is not clear. Using a randomized, double-blind placebo-controlled crossover design, we tested 30 healthy young participants and showed that biperiden impairs the ability to learn sequential finger movements, accompanied by widespread oscillatory broadband power changes (4-25 Hz) in the motor sequence learning network after receiving biperiden, with greater power in the theta, alpha and beta bands over ipsilateral motor and bilateral parietal-occipital areas. The reduced early theta power during a repeated compared with random sequence, likely reflecting disengagement of top-down attention to sensory processes, was disrupted by biperiden. Alpha synchronization during repeated sequences reflects sensory gating and lower visuospatial attention requirements compared with visuomotor responses to random sequences. After biperiden, alpha synchronization was greater, potentially reflecting excessive visuospatial attention reduction, affecting visuomotor responding required to enable sequence learning. Beta oscillations facilitate sequence learning by integrating visual and somatosensory inputs, stabilizing repeated sequences and promoting prediction of the next stimulus. The beta synchronization after biperiden fits with a disruption of the selective visuospatial attention enhancement associated with initial sequence learning. These findings highlight the role of cholinergic processes in motor sequence learning.
Assuntos
Biperideno , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Biperideno/farmacologia , Método Duplo-Cego , Aprendizagem/fisiologia , Aprendizagem/efeitos dos fármacos , Antagonistas Colinérgicos/farmacologia , Estudos Cross-Over , Atenção/efeitos dos fármacos , Atenção/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ritmo beta/efeitos dos fármacos , Ritmo beta/fisiologia , Dedos/fisiologiaRESUMO
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique which was found to have a positive modulatory effect on online sequence acquisition or offline motor consolidation, depending on the relative role of the associated brain region. Primary motor regions (M1) and dorsolateral prefrontal cortices (DLPFC) have both been related to sequential learning. However, research so far did not systematically disentangle their differential roles in online and offline learning especially in more complex sequential paradigms. In this study, the influence of anodal M1 leg area-tDCS and anodal DLPFC-tDCS applied during complex sequential learning (online and offline) was investigated using a complex whole body serial reaction time task (CWB-SRTT) in 42 healthy volunteers. TDCS groups did not differ from sham tDCS group regarding their response and reaction time (online) and also not in terms of overnight consolidation (offline). Sequence specific learning and the number of recalled items also did not differ between groups. Results may be related to unspecific parameters such as timing of the stimulation or current intensity but can also be attributed to the relative role of M1 and DLPFC during early complex learning. Taken together, the current study provides preliminary evidence that M1 leg area or DLPFC modulation by means of tDCS does not improve complex sequential skill learning. SIGNIFICANCE STATEMENT: Understanding motor learning is helpful to deepen our knowledge about the human ability to acquire new skills. Complex sequential learning tasks have only been studied, sparsely, but are particularly mimicking challenges of daily living. The present study studied early motor learning in a complex serial reaction time task while transcranial direct current stimulation (tDCS) was either applied to leg primary motor cortex or bilateral dorsolateral prefrontal cortex. TDCS did not affect sequential learning, neither directly during performance nor in terms of sequence consolidation. Results provide preliminary information that M1 or bilateral DLPFC modulation does not improve early complex motor learning.
Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Pré-Frontal Dorsolateral , Córtex Motor/fisiologia , Aprendizagem/fisiologia , Tempo de Reação/fisiologia , Córtex Pré-Frontal/fisiologiaRESUMO
Inconsistent results are observed in the effects of transcranial direct current stimulation (tDCS) with different montages on motor learning. This study aimed to compare the effects of anodal and cathodal tDCS (c-tDCS) over primary motor cortex (M1) at different intensities on motor learning in healthy young adults. The participants were randomly divided into: (1) 1 mA M1 c-tDCS, (2) 1 mA M1 anodal tDCS (a-tDCS), (3) 2 mA M1 c-tDCS, (4) 2 mA M1 a-tDCS and (5) M1 sham tDCS groups. The groups received 20-min stimulation with serial reaction time task (SRTT) incidentally, while the tDCS was turned off after 30 s in the sham tDCS group. Response time (RT) and error rate (ER) during SRTT were assessed prior, during and 72 h after the intervention. The results of the paired t-test indicated that online learning occurred in all groups (p < 0.05), except in M1 c-tDCS (1 mA) (p > 0.05). One-way ANOVA analysis also indicated that there were differences in offline learning (RT (F(DF) = 5.19(4); p < 0.001; and ER (F(DF) = 9(4), p < 0.0001) among groups, with more offline learning in 1 mA M1 a-tDCS, 2 mA M1 c-tDCS and 2 mA M1 a-tDCS groups (p < 0.05). On the other hand, the 1 mA M1 c-tDCS group did not indicate any consolidation effect or even a trend toward negative offline learning. M1 a-tDCS with different intensities and also 2 mA M1 c-tDCS may be helpful for the enhancement of motor learning in young healthy adults. This study enhances our understanding of tDCS intensity and polarity effects on motor learning, with potential for optimizing therapeutic protocols.
RESUMO
Conscious reportable (un)pleasantness feelings were shown to be successfully described by a process in which evidence favoring pleasant and unpleasant feelings accumulates until one response wins the race. This approach is challenged by (a) insufficient specification of "evidence," and (b) incomplete verification that participants report their truly experienced (un)pleasant feelings and not what they expect to feel. In each trial in this preregistered experiment, the (un)pleasant feeling reports regarding emotion evoking pictures was embedded in a period when participants expected a low-effort task (feature visual search) or a high-effort task (feature-conjunction search). Fitting the Linear Ballistic Accumulator model to the feeling report data shows that anticipated effort was associated with a higher rate of unpleasant evidence accumulation, but only when the emotion evoking pictures were normatively unpleasant and not when they were normatively pleasant. These results suggest that anticipated effort may be one source of "evidence," but only given a certain interpretation of the findings, and that genuinely felt emotions contribute to the emotion reports, assuming that participants intended to react to the pictures, as instructed, and not to the anticipated effort.
Assuntos
Emoções , Humanos , Emoções/fisiologia , Feminino , Masculino , Adulto Jovem , Adulto , Antecipação Psicológica/fisiologia , Estimulação Luminosa/métodosRESUMO
Implicit motor sequence learning (IMSL) is a cognitive function that is known to be associated with impaired motor function in Parkinson's disease (PD). We previously reported positive effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on IMSL in 11 individuals with PD with mild cognitive impairments (MCI), with the largest effects occurring during reacquisition. In the present study, we included 35 individuals with PD, with (n = 15) and without MCI (n = 20), and 35 age- and sex-matched controls without PD, with (n = 13) and without MCI (n = 22). We used mixed-effects models to analyze anodal M1 tDCS effects on acquisition (during tDCS), short-term (five minutes post-tDCS) and long-term reacquisition (one-week post-tDCS) of general and sequence-specific learning skills, as measured by the serial reaction time task. At long-term reacquisition, anodal tDCS resulted in smaller general learning effects compared to sham, only in the PD group, p = .018, possibly due to floor effects. Anodal tDCS facilitated the acquisition of sequence-specific learning (M = 54.26 ms) compared to sham (M = 38.98 ms), p = .003, regardless of group (PD/controls). Further analyses revealed that this positive effect was the largest in the PD-MCI group (anodal: M = 69.07 ms; sham: M = 24.33 ms), p < .001. Although the observed effect did not exceed the stimulation period, this single-session tDCS study confirms the potential of tDCS to enhance IMSL, with the largest effects observed in patients with lower cognitive status. These findings add to the body of evidence that anodal tDCS can beneficially modulate the abnormal basal ganglia network activity that occurs in PD.
Assuntos
Córtex Motor , Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Doença de Parkinson/terapia , Córtex Motor/fisiologia , Aprendizagem/fisiologia , Tempo de ReaçãoRESUMO
BACKGROUND: The mechanical tactile stimulation, such as plastic pins and airflow-driven membrane, induces cortical activity. The cortical activity depends on the mechanical tactile stimulation pattern. Therefore, the stimulation pattern of mechanical tactile stimuli intervention may influence its effect on the somatosensory function. However, the effect of the mechanical tactile stimulation input pattern on the somatosensory function has not yet been investigated at the behavioral level. The present study aimed to clarify the effects of mechanical tactile stimuli intervention with different stimulation patterns on the ability to discriminate moving directions. RESULTS: Twenty healthy adults participated in the experiment. Three conditions were used for mechanical tactile stimuli intervention: (1) the whole stimulus surface was stimulated, (2) the stimulus moved within the stimulus surface, and (3) a no-stimulus condition. The effects of mechanical tactile stimuli intervention on tactile discrimination were evaluated using a simple reaction task and a choice reaction task to discriminate the movement direction. Reaction time, correct rate, and rate correct score were calculated to measure task performance. We examined the effects of mechanical tactile stimuli intervention on the ability to discriminate the moving direction for a certain period under three intervention conditions. The results showed that the mean reaction time during the simple reaction task did not differ significantly before and after the intervention under all intervention conditions. Similarly, we compared the data obtained before and after the intervention during the choice reaction task. Our results revealed that the mean reaction time and correct rate did not differ significantly under vertical and horizontal conditions. However, the rate correct score showed a significant improvement after the horizontal moving tactile stimulation intervention under both vertical and horizontal conditions. CONCLUSIONS: Our results showed that the effect of mechanical tactile stimuli intervention on mechanical tactile stimulation moving direction discrimination function depended on the input pattern of mechanical tactile stimuli intervention. Our results suggest the potential therapeutic benefits of sustained tactile stimulation intervention. This study revealed that it is possible to change behavioral levels via mechanical tactile stimuli intervention as well as the potential of mechanical tactile stimuli intervention in the field of rehabilitation.
Assuntos
Movimento , Adulto , Humanos , Tempo de Reação , Fatores de TempoRESUMO
The purpose of this study was to investigate the association between chronic sleep duration and reaction time performance and motor preparation during a simple reaction time task with a startling acoustic stimulus in adults. This cross-sectional study included self-reported short sleepers (n = 25, ≤ 6 hr per night) and adequate sleepers (n = 25, ≥ 7.5 hr per night) who performed a simple reaction time task requiring a targeted ballistic wrist extension in response to either a control-tone (80 dB) or a startling acoustic stimulus (120 dB). Outcome measures included reaction times for each stimulus (overall and for each trial block), lapses, and proportion of startle responses. Chronic short sleepers slept on average 5.7 hr per night in the previous month, which was 2.8 hr per night less than the adequate sleepers. Results revealed an interaction between sleep duration group and stimulus type; the short sleepers had significantly slower control-tone reaction times compared with adequate sleepers, but there was no significant difference in reaction time between groups for the startling acoustic stimulus. Further investigation showed that chronic short sleepers had significantly slower control-tone reaction times after two blocks of trials lasting about 5 min, until the end of the task. Lapses were not significantly different between groups. Chronic short sleep duration was associated with poorer performance; however, these reaction time deficits cannot be attributed to motor preparation, as startling acoustic stimulus reaction times were not different between sleep duration groups. While time-on-task performance decrements were associated with chronic sleep duration, alertness was not. Sleeping less than the recommended sleep duration on a regular basis is associated with poorer cognitive performance, which becomes evident after 5 min.
RESUMO
Recent studies suggest that the EEG aperiodic exponent (often represented as a slope in log-log space) is sensitive to individual differences in momentary cognitive skills such as selective attention and information processing speed. However, findings are mixed, and most of the studies have focused on just a narrow range of cognitive domains. This study used an archival dataset to help clarify associations between resting aperiodic features and broad domains of cognitive ability, which vary in their demands on momentary processing. Undergraduates (N = 166) of age 18-52 years completed a resting EEG session as well as a standardized, individually administered assessment of cognitive ability that included measures of processing speed, working memory, and higher-order visuospatial and verbal skills. A subsample (n = 110) also completed a computerized reaction time task with three difficulty levels. Data reduction analyses revealed strong correlations between the aperiodic offset and slope across electrodes, and a single component accounted for ~60% of variance in slopes across the scalp, in both eyes-closed and eyes-open conditions. Structural equation models did not support relations between the slope and specific domains tapping momentary processes. However, secondary analyses indicated that the eyes-open slope was related to higher overall performance, as represented by a single general ability factor. A latent reaction time variable was significantly inversely related to both eyes-closed and eyes-open resting exponents, such that faster reaction times were associated with steeper slopes. These findings support and help clarify the relation of the resting EEG exponent to individual differences in cognitive skills.
Assuntos
Cognição , Eletroencefalografia , Humanos , Adulto Jovem , Masculino , Adulto , Adolescente , Feminino , Pessoa de Meia-Idade , Cognição/fisiologia , Atenção/fisiologia , Tempo de Reação/fisiologia , Individualidade , Memória de Curto Prazo/fisiologia , Aptidão/fisiologia , Desempenho Psicomotor/fisiologiaRESUMO
Concealed information test (CIT) has been utilized for long to perform single measurements. The combination of multiple measures outperforms single measures because of the diverse cognitive processes they reflect and the reduction in random errors facilitated by multiple measures. To further explore the performance of the CIT with multiple measurements, 57 participants were recruited and randomly assigned into guilty and innocent groups. Subsequently, simultaneously recorded reaction time (RT), skin conductance responses (SCRs), heart rate (HR), and neuroimaging data were collected from functional near-infrared spectroscopy (fNIRS) to detect participants' concealed information in a standard CIT. The results demonstrated that all indicators including RT (area under the curve (AUC) = 0.87), SCRs (AUC = 0.79), HR (AUC = 0.78), and fNIRS (channel 8, AUC = 0.85) could differentiate guilty and innocent groups. Importantly, the use of multiple indicators achieved higher detection efficiency (AUC = 0.96) compared to the use of any single indicator. These results illustrate the effectiveness and feasibility of integrating multiple indicators for concealed information detection in CIT.
RESUMO
OBJECTIVE: Increased intraindividual variability (IIV) of cognitive performance is a marker of cognitive decline in older adults. Whether computerized cognitive training (CCT) and aerobic exercise counteracts cognitive decline by reducing IIV is unknown. We investigated the effects of CCT with or without aerobic exercise on IIV in older adults. METHODS: This was a secondary analysis of an 8-week randomized controlled trial. Older adults (aged 65-85 years) were randomized to CCT alone (n = 41), CCT with aerobic exercise (n = 41), or an active control group (n = 42). The CCT group trained using the Fit Brains® platform 3×/week for 1 hr (plus 3×/week of home-based training). The CCT with aerobic exercise group received 15 min of walking plus 45 min of Fit Brains® 3×/week (plus 3×/week of home-based training). The control group received sham exercise and cognitive training (3×/week for 1 hr). We computed reaction time IIV from the Dimensional Change Card Sort Test, Flanker Inhibitory Control and Attention Test (Flanker), and Pattern Comparison Processing Speed Test (PACPS). RESULTS: Compared with the control group, IIV reduced in a processing speed task (PACPS) following CCT alone (mean difference [95% confidence interval]: -0.144 [-0.255 to -0.034], p < 0.01) and CCT with aerobic exercise (-0.113 [-0.225 to -0.001], p < 0.05). Attention (Flanker congruent) IIV was reduced only after CCT with aerobic exercise (-0.130 [-0.242 to -0.017], p < 0.05). CONCLUSIONS: A CCT program promoted cognitive health via reductions in IIV of cognitive performance and combining it with aerobic exercise may result in broader benefits.
Assuntos
Cognição , Disfunção Cognitiva , Humanos , Idoso , Exercício Físico/psicologia , Caminhada , Terapia por Exercício/métodosRESUMO
INTRODUCTION: Light is a key factor in moderating human alertness, both subjective and objective. However, the methodology applies in research on the effects of exposure to light of different wavelengths and intensities on objective and subjective alertness varies greatly and evidence on objective alertness in particular is still inconclusive. Thus, the present, highly standardized within-subject laboratory study on N = 44 healthy males explored how LED light of different intensities (dim vs. bright light) and wavelengths (red vs. blue) affected objective (reaction time/RT) as well as subjective (sleepiness) alertness in the morning after wake-up. METHODS: Participants spent two separate nights in the laboratory and were exposed to either one of the two light intensities or colors for 60 min after wake-up. Additionally, they indicated their sleepiness on the Karolinska Sleepiness Scale and participated in an auditory RT task before and after light intervention. It was hypothesized that both bright and blue light would lead to greater subjective and objective alertness when compared to dim and red light, respectively. RESULTS: Results indicated that average RTs were longer for participants in the bright light condition (p = 0.004, f2 = 0.07) and that RTs decreased post-light exposure irrespective of light being dim or bright (p = 0.026, f2 = 0.07). However, dim versus bright light and RT did not interact (p = 0.758, f2 = 0.07). Chronotype was a significant covariate in the interaction of dim versus bright light and subjective sleepiness (p = 0.008, f2 = 0.22). There was no difference in RTs when comparing exposure to red or blue light (p = 0.488, f2 = 0.01). Findings on subjective sleepiness and light of different wavelengths revealed that sleepiness was reduced after light exposure (p = 0.007, f2 = 0.06), although the wavelength of light did not appear to play a role in this effect (p = 0.817, f2 = 0.06). CONCLUSION: Hence, neither of the hypotheses could be confirmed. However, they indicated that evening types might benefit from exposure to bright light regarding sleepiness, but not morning types.
RESUMO
Humans can selectively process information and make decisions by directing their attention to desired locations in their daily lives. Numerous studies have shown that attention increases the rate of correct responses and shortens reaction time, and it has been hypothesized that this phenomenon is caused by an increase in sensitivity of the sensory signals to which attention is directed. The present study employed psychophysical methods and electroencephalography (EEG) to test the hypothesis that attention accelerates the onset of information accumulation. Participants were asked to discriminate the motion direction of one of two random dot kinematograms presented on the left and right sides of the visual field, one of which was cued by an arrow in 80% of the trials. The drift-diffusion model was applied to the percentage of correct responses and reaction times in the attended and unattended fields of view. Attention primarily increased sensory sensitivity and shortened the time unrelated to decision making. Next, we measured centroparietal positivity (CPP), an EEG measure associated with decision making, and found that CPP latency was shorter in attended trials than in unattended trials. These results suggest that attention not only increases sensory sensitivity but also accelerates the initiation of decision making.