RESUMO
Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found seven major antibody competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of antibody-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. Although emerging SARS-CoV-2 variants of concern escaped binding by many members of the groups associated with the most potent neutralizing activity, some antibodies in each of those groups retained affinity-suggesting that otherwise redundant components of a primary immune response are important for durable protection from evolving pathogens. Our results furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants.
RESUMO
Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in â¼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in â¼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.
Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Epitopos de Linfócito T , Pneumonia Viral/imunologia , Betacoronavirus/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Vacinas contra COVID-19 , Convalescença , Infecções por Coronavirus/sangue , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Reações Cruzadas , Humanos , Leucócitos Mononucleares/imunologia , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Virais/metabolismo , Vacinas Virais/imunologiaRESUMO
The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from 10 COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb, CV07-209, neutralized authentic SARS-CoV-2 with an IC50 value of 3.1 ng/mL. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 Å revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2-neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss, and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/metabolismo , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/uso terapêutico , Reações Antígeno-Anticorpo , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cricetinae , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Cinética , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
The HLA-DR15 haplotype is the strongest genetic risk factor for multiple sclerosis (MS), but our understanding of how it contributes to MS is limited. Because autoreactive CD4+ T cells and B cells as antigen-presenting cells are involved in MS pathogenesis, we characterized the immunopeptidomes of the two HLA-DR15 allomorphs DR2a and DR2b of human primary B cells and monocytes, thymus, and MS brain tissue. Self-peptides from HLA-DR molecules, particularly from DR2a and DR2b themselves, are abundant on B cells and thymic antigen-presenting cells. Furthermore, we identified autoreactive CD4+ T cell clones that can cross-react with HLA-DR-derived self-peptides (HLA-DR-SPs), peptides from MS-associated foreign agents (Epstein-Barr virus and Akkermansia muciniphila), and autoantigens presented by DR2a and DR2b. Thus, both HLA-DR15 allomorphs jointly shape an autoreactive T cell repertoire by serving as antigen-presenting structures and epitope sources and by presenting the same foreign peptides and autoantigens to autoreactive CD4+ T cells in MS.
Assuntos
Subtipos Sorológicos de HLA-DR/imunologia , Esclerose Múltipla/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Alelos , Antígenos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Reações Cruzadas/imunologia , Feminino , Humanos , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Peptídeos/imunologia , Proteoma/metabolismo , Adulto JovemRESUMO
Small molecule covalent drugs provide desirable therapeutic properties over noncovalent ones for treating challenging diseases. The potential of covalent protein drugs, however, remains unexplored due to protein's inability to bind targets covalently. We report a proximity-enabled reactive therapeutics (PERx) approach to generate covalent protein drugs. Through genetic code expansion, a latent bioreactive amino acid fluorosulfate-L-tyrosine (FSY) was incorporated into human programmed cell death protein-1 (PD-1). Only when PD-1 interacts with PD-L1 did the FSY react with a proximal histidine of PD-L1 selectively, enabling irreversible binding of PD-1 to only PD-L1 in vitro and in vivo. When administrated in immune-humanized mice, the covalent PD-1(FSY) exhibited strikingly more potent antitumor effect over the noncovalent wild-type PD-1, attaining therapeutic efficacy equivalent or superior to anti-PD-L1 antibody. PERx should provide a general platform technology for converting various interacting proteins into covalent binders, achieving specific covalent protein targeting for biological studies and therapeutic capability unattainable with conventional noncovalent protein drugs.
Assuntos
Preparações Farmacêuticas/metabolismo , Proteínas/uso terapêutico , Sequência de Aminoácidos , Animais , Antineoplásicos/metabolismo , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Membrana Celular/metabolismo , Proliferação de Células , Células Dendríticas/metabolismo , Humanos , Cinética , Ligantes , Ativação Linfocitária/imunologia , Camundongos , Monócitos/metabolismo , Fenótipo , Proteínas/química , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Tumor immune cell compositions play a major role in response to immunotherapy, but the heterogeneity and dynamics of immune infiltrates in human cancer lesions remain poorly characterized. Here, we identify conserved intratumoral CD4 and CD8 T cell behaviors in scRNA-seq data from 25 melanoma patients. We discover a large population of CD8 T cells showing continuous progression from an early effector "transitional" into a dysfunctional T cell state. CD8 T cells that express a complete cytotoxic gene set are rare, and TCR sharing data suggest their independence from the transitional and dysfunctional cell states. Notably, we demonstrate that dysfunctional T cells are the major intratumoral proliferating immune cell compartment and that the intensity of the dysfunctional signature is associated with tumor reactivity. Our data demonstrate that CD8 T cells previously defined as exhausted are in fact a highly proliferating, clonal, and dynamically differentiating cell population within the human tumor microenvironment.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Melanoma/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/imunologiaRESUMO
Th17 cells provide protection at barrier tissues but may also contribute to immune pathology. The relevance and induction mechanisms of pathologic Th17 responses in humans are poorly understood. Here, we identify the mucocutaneous pathobiont Candida albicans as the major direct inducer of human anti-fungal Th17 cells. Th17 cells directed against other fungi are induced by cross-reactivity to C. albicans. Intestinal inflammation expands total C. albicans and cross-reactive Th17 cells. Strikingly, Th17 cells cross-reactive to the airborne fungus Aspergillus fumigatus are selectively activated and expanded in patients with airway inflammation, especially during acute allergic bronchopulmonary aspergillosis. This indicates a direct link between protective intestinal Th17 responses against C. albicans and lung inflammation caused by airborne fungi. We identify heterologous immunity to a single, ubiquitous member of the microbiota as a central mechanism for systemic induction of human anti-fungal Th17 responses and as a potential risk factor for pulmonary inflammatory diseases.
Assuntos
Candida albicans/imunologia , Células Th17/imunologia , Células Th17/metabolismo , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Candida albicans/patogenicidade , Reações Cruzadas/imunologia , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Humanos , Imunidade , Imunidade Heteróloga/imunologia , Células Th17/fisiologiaRESUMO
Many infections, including malaria, are associated with an increase in autoantibodies (AAbs). Prior studies have reported an association between genetic markers of susceptibility to autoimmune disease and resistance to malaria, but the underlying mechanisms are unclear. Here, we performed a longitudinal study of children and adults (n = 602) in Mali and found that high levels of plasma AAbs before the malaria season independently predicted a reduced risk of clinical malaria in children during the ensuing malaria season. Baseline AAb seroprevalence increased with age and asymptomatic Plasmodium falciparum infection. We found that AAbs purified from the plasma of protected individuals inhibit the growth of blood-stage parasites and bind P. falciparum proteins that mediate parasite invasion. Protected individuals had higher plasma immunoglobulin G (IgG) reactivity against 33 of the 123 antigens assessed in an autoantigen microarray. This study provides evidence in support of the hypothesis that a propensity toward autoimmunity offers a survival advantage against malaria.
Assuntos
Autoanticorpos , Imunoglobulina G , Malária Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/imunologia , Autoanticorpos/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Criança , Pré-Escolar , Adulto , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Feminino , Mali , Masculino , Adolescente , Anticorpos Antiprotozoários/imunologia , Estudos Longitudinais , Lactente , Antígenos de Protozoários/imunologia , Adulto Jovem , Autoantígenos/imunologia , Estudos Soroepidemiológicos , Pessoa de Meia-IdadeRESUMO
Adoptive cell therapy (ACT) using in vitro expanded tumor-infiltrating lymphocytes (TILs) has inconsistent clinical responses. To better understand determinants of therapeutic success, we tracked TIL clonotypes from baseline tumors to ACT products and post-ACT blood and tumor samples in melanoma patients using single-cell RNA and T cell receptor (TCR) sequencing. Patients with clinical responses had baseline tumors enriched in tumor-reactive TILs, and these were more effectively mobilized upon in vitro expansion, yielding products enriched in tumor-specific CD8+ cells that preferentially infiltrated tumors post-ACT. Conversely, lack of clinical responses was associated with tumors devoid of tumor-reactive resident clonotypes and with cell products mostly composed of blood-borne clonotypes that persisted in blood but not in tumors post-ACT. Upon expansion, tumor-specific TILs lost tumor-associated transcriptional signatures, including exhaustion, and responders exhibited an intermediate exhausted effector state after TIL engraftment in the tumor, suggesting functional reinvigoration. Our findings provide insight into the nature and dynamics of tumor-specific clonotypes associated with clinical response to TIL-ACT, with implications for treatment optimization.
Assuntos
Linfócitos T CD8-Positivos , Imunoterapia Adotiva , Linfócitos do Interstício Tumoral , Melanoma , Receptores de Antígenos de Linfócitos T , Humanos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/terapia , Imunoterapia Adotiva/métodos , Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Células Clonais , Animais , Resultado do TratamentoRESUMO
Repetitive pathogen exposure leads to the dominant outgrowth of T cell clones with high T cell receptor (TCR) affinity to the relevant pathogen-associated antigens. However, low-affinity clones are also known to expand and form immunological memory. While these low-affinity clones contribute less immunity to the original pathogen, their role in protection against pathogens harboring immune escape mutations remains unclear. Based on identification of the TCR repertoire and functionality landscape of naive epitope-specific CD8+ T cells, we reconstructed defined repertoires that could be followed as polyclonal populations during immune responses in vivo. We found that selective clonal expansion is governed by clear TCR avidity thresholds. Simultaneously, initial recruitment of broad TCR repertoires provided a polyclonal niche from which flexible secondary responses to mutant epitopes could be recalled. Elucidating how T cell responses develop "from scratch" is informative for the development of enhanced immunotherapies and vaccines.
Assuntos
Linfócitos T CD8-Positivos , Reinfecção , Humanos , Epitopos , Receptores de Antígenos de Linfócitos T/genética , Células Clonais , Mutação/genéticaRESUMO
The 2003 severe acute respiratory syndrome coronavirus (SARS-CoV-1) causes more severe disease than SARS-CoV-2, which is responsible for COVID-19. However, our understanding of antibody response to SARS-CoV-1 infection remains incomplete. Herein, we studied the antibody responses in 25 SARS-CoV-1 convalescent patients. Plasma neutralization was higher and lasted longer in SARS-CoV-1 patients than in severe SARS-CoV-2 patients. Among 77 monoclonal antibodies (mAbs) isolated, 60 targeted the receptor-binding domain (RBD) and formed 7 groups (RBD-1 to RBD-7) based on their distinct binding and structural profiles. Notably, RBD-7 antibodies bound to a unique RBD region interfaced with the N-terminal domain of the neighboring protomer (NTD proximal) and were more prevalent in SARS-CoV-1 patients. Broadly neutralizing antibodies for SARS-CoV-1, SARS-CoV-2, and bat and pangolin coronaviruses were also identified. These results provide further insights into the antibody response to SARS-CoV-1 and inform the design of more effective strategies against diverse human and animal coronaviruses.
Assuntos
COVID-19 , Animais , Humanos , Anticorpos Antivirais , Formação de Anticorpos , SARS-CoV-2 , Anticorpos NeutralizantesRESUMO
Efforts are being made worldwide to understand the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, including the impact of T cell immunity and cross-recognition with seasonal coronaviruses. Screening of SARS-CoV-2 peptide pools revealed that the nucleocapsid (N) protein induced an immunodominant response in HLA-B7+ COVID-19-recovered individuals that was also detectable in unexposed donors. A single N-encoded epitope that was highly conserved across circulating coronaviruses drove this immunodominant response. In vitro peptide stimulation and crystal structure analyses revealed T cell-mediated cross-reactivity toward circulating OC43 and HKU-1 betacoronaviruses but not 229E or NL63 alphacoronaviruses because of different peptide conformations. T cell receptor (TCR) sequencing indicated that cross-reactivity was driven by private TCR repertoires with a bias for TRBV27 and a long CDR3ß loop. Our findings demonstrate the basis of selective T cell cross-reactivity for an immunodominant SARS-CoV-2 epitope and its homologs from seasonal coronaviruses, suggesting long-lasting protective immunity.
Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Coronavirus/classificação , Coronavirus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Reações Cruzadas , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Antígeno HLA-B7/química , Antígeno HLA-B7/genética , Antígeno HLA-B7/imunologia , Humanos , Epitopos Imunodominantes/química , Memória Imunológica , Modelos Moleculares , Peptídeos/química , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologiaRESUMO
To identify disease-relevant T cell receptors (TCRs) with shared antigen specificity, we analyzed 778,938 TCRß chain sequences from 178 non-small cell lung cancer patients using the GLIPH2 (grouping of lymphocyte interactions with paratope hotspots 2) algorithm. We identified over 66,000 shared specificity groups, of which 435 were clonally expanded and enriched in tumors compared to adjacent lung. The antigenic epitopes of one such tumor-enriched specificity group were identified using a yeast peptide-HLA A∗02:01 display library. These included a peptide from the epithelial protein TMEM161A, which is overexpressed in tumors and cross-reactive epitopes from Epstein-Barr virus and E. coli. Our findings suggest that this cross-reactivity may underlie the presence of virus-specific T cells in tumor infiltrates and that pathogen cross-reactivity may be a feature of multiple cancers. The approach and analytical pipelines generated in this work, as well as the specificity groups defined here, present a resource for understanding the T cell response in cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Mapeamento de Epitopos/métodos , Epitopos de Linfócito T/genética , Neoplasias Pulmonares/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/imunologia , Algoritmos , Apresentação de Antígeno , Antígenos de Neoplasias/metabolismo , Células Cultivadas , Reações Cruzadas , Epitopos de Linfócito T/metabolismo , Antígeno HLA-A2/metabolismo , Humanos , Ligação Proteica , Especificidade do Receptor de Antígeno de Linfócitos TRESUMO
Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Second-generation vaccines will need to elicit neutralizing antibodies against sites that are evolutionarily conserved across the sarbecovirus subgenus. Here, we immunized mice containing a human antibody repertoire with diverse sarbecovirus receptor-binding domains (RBDs) to identify antibodies targeting conserved sites of vulnerability. Antibodies with broad reactivity against diverse clade B RBDs targeting the conserved class 4 epitope, with recurring IGHV/IGKV pairs, were readily elicited but were non-neutralizing. However, rare class 4 antibodies binding this conserved RBD supersite showed potent neutralization of SARS-CoV-2 and all variants of concern. Structural analysis revealed that the neutralizing ability of cross-reactive antibodies was reserved only for those with an elongated CDRH3 that extends the antiparallel beta-sheet RBD core and orients the antibody light chain to obstruct ACE2-RBD interactions. These results identify a structurally defined pathway for vaccine strategies eliciting escape-resistant SARS-CoV-2 neutralizing antibodies.
Assuntos
Betacoronavirus/fisiologia , Vacinas contra COVID-19/imunologia , Infecções por Coronavirus/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Sequência Conservada/genética , Evolução Molecular , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica , Domínios Proteicos/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Desenvolvimento de VacinasRESUMO
CD4+ T cells reactive against SARS-CoV-2 can be found in unexposed individuals, and these are suggested to arise in response to common cold coronavirus (CCCoV) infection. Here, we utilized SARS-CoV-2-reactive CD4+ T cell enrichment to examine the antigen avidity and clonality of these cells, as well as the relative contribution of CCCoV cross-reactivity. SARS-CoV-2-reactive CD4+ memory T cells were present in virtually all unexposed individuals examined, displaying low functional avidity and multiple, highly variable cross-reactivities that were not restricted to CCCoVs. SARS-CoV-2-reactive CD4+ T cells from COVID-19 patients lacked cross-reactivity to CCCoVs, irrespective of strong memory T cell responses against CCCoV in all donors analyzed. In severe but not mild COVID-19, SARS-CoV-2-specific T cells displayed low functional avidity and clonality, despite increased frequencies. Our findings identify low-avidity CD4+ T cell responses as a hallmark of severe COVID-19 and argue against a protective role for CCCoV-reactive T cells in SARS-CoV-2 infection.
Assuntos
Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Rhinovirus/imunologia , SARS-CoV-2/imunologia , Antígenos Virais/imunologia , Células Cultivadas , Reações Cruzadas , Progressão da Doença , Exposição Ambiental , Humanos , Memória Imunológica , Ativação Linfocitária , Ligação Proteica , Índice de Gravidade de Doença , Especificidade do Receptor de Antígeno de Linfócitos TRESUMO
Nitroxyl (HNO), a one-electron reduced and protonated congener of nitric oxide (â¢NO), was recently discovered in Arabidopsis thaliana. Due to its distinct chemical properties, we believe HNO must be further studied to determine how many physiological processes it impacts.
Assuntos
Arabidopsis , Óxido Nítrico , Óxidos de Nitrogênio/química , BiologiaRESUMO
There is a long-standing assumption that naive CD4+ and CD8+ T cells are largely homogeneous populations despite the extraordinary diversity of their T cell receptors (TCR). The self-immunopeptidome plays a key role in the selection of the naive T cell repertoire in the thymus, and self-peptides are also an important driver of differences between individual naive T cells with regard to their subsequent functional contributions to an immune response. Accumulating evidence suggests that as early as the ß-selection stage of T cell development, when only one of the recombined chains of the mature TCR is expressed, signaling thresholds may be established for positive selection of immature thymocytes. Stochastic encounters subsequently made with self-ligands during positive selection in the thymus imprint functional biases that a T cell will carry with it throughout its lifetime, although ongoing interactions with self in the periphery ensure a level of plasticity in the gene expression wiring of naive T cells. Identifying the sources of heterogeneity in the naive T cell population and which functional attributes of T cells can be modulated through post-thymic interventions versus those that are fixed during T cell development, could enable us to better select or generate T cells with particular traits to improve the efficacy of T cell therapies.
Assuntos
Linfócitos T CD8-Positivos , Timo , Humanos , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Ativação Linfocitária , Diferenciação CelularRESUMO
It is broadly recognized that intramolecular electric fields, produced by the protein scaffold and acting on the active site, facilitate enzymatic catalysis. This field effect can be described by several theoretical models, each of which is intuitive to varying degrees. In this contribution, we show that a fundamental effect of electric fields is to generate electrostatic potentials that facilitate the energetic alignment of reactant frontier orbitals. We apply this model to demystify the impact of electric fields on high-valent iron-oxo heme proteins: catalases, peroxidases, and peroxygenases/monooxygenases. Specifically, we show that this model easily accounts for the observed field-induced changes to the spin distribution within peroxidase active sites and explains the transition between epoxidation and hydroxylation pathways seen in Cytochrome P450 active site models. Thus, for the intuitive interpretation of the chemical effect of the field, the strategy involves analyzing the response of the orbitals of active site fragments, and their energetic alignment. We note that the energy difference between fragment orbitals involved in charge redistribution acts as a measure for the chemical hardness/softness of the reactive complex. This measure, and its sensitivity to electric fields, offers a single parameter model from which to quantitatively assess the effects of electric fields on reactivity and selectivity. Thus, the model provides an additional perspective to describe electrostatic preorganization and offers ways for its manipulation.
Assuntos
Domínio Catalítico , Eletricidade Estática , Eletricidade , Modelos Moleculares , Peroxidases/metabolismo , Peroxidases/química , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismoRESUMO
Human T cells have a diverse T-cell receptor (TCR) repertoire that endows them with the ability to identify and defend against a broad spectrum of antigens. The universe of possible antigens that T cells may encounter, however, is even larger. To effectively surveil such a vast universe, the T-cell repertoire must adopt a high degree of cross-reactivity. Likewise, antigen-specific and cross-reactive T-cell responses play pivotal roles in both protective and pathological immune responses in numerous diseases. In this review, we explore the implications of these antigen-driven T-cell responses, with a particular focus on CD8+ T cells, using infection, neurodegeneration, and cancer as examples. We also summarize recent technological advances that facilitate high-throughput profiling of antigen-specific and cross-reactive T-cell responses experimentally, as well as computational biology approaches that predict these interactions.
Assuntos
Antígenos , Linfócitos T CD8-Positivos , Humanos , Reações Cruzadas , Receptores de Antígenos de Linfócitos TRESUMO
Interpreting the outcome of chemistry experiments consistently is slow and frequently introduces unwanted hidden bias. This difficulty limits the scale of collectable data and often leads to exclusion of negative results, which severely limits progress in the field. What is needed is a way to standardize the discovery process and accelerate the interpretation of high-dimensional data aided by the expert chemist's intuition. We demonstrate a digital Oracle that interprets chemical reactivity using probability. By carrying out >500 reactions covering a large space and retaining both the positive and negative results, the Oracle was able to rediscover eight historically important reactions including the aldol condensation, Buchwald-Hartwig amination, Heck, Mannich, Sonogashira, Suzuki, Wittig, and Wittig-Horner reactions. This paradigm for decoding reactivity validates and formalizes the expert chemist's experience and intuition, providing a quantitative criterion of discovery scalable to all available experimental data.