Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 20(Suppl 16): 585, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31787070

RESUMO

BACKGROUND: Low diversity of the gut microbiome, often progressing to the point of intestinal domination by a single species, has been linked to poor outcomes in patients undergoing hematopoietic cell transplantation (HCT). Our ability to understand how certain organisms attain intestinal domination over others has been restricted in part by current metagenomic sequencing technologies that are typically unable to reconstruct complete genomes for individual organisms present within a sequenced microbial community. We recently developed a metagenomic read cloud sequencing and assembly approach that generates improved draft genomes for individual organisms compared to conventional short-read sequencing and assembly methods. Herein, we applied metagenomic read cloud sequencing to four stool samples collected longitudinally from an HCT patient preceding treatment and over the course of heavy antibiotic exposure. RESULTS: Characterization of microbiome composition by taxonomic classification of reads reveals that that upon antibiotic exposure, the subject's gut microbiome experienced a marked decrease in diversity and became dominated by Escherichia coli. While diversity is restored at the final time point, this occurs without recovery of the original species and strain-level composition. Draft genomes for individual organisms within each sample were generated using both read cloud and conventional assembly. Read clouds were found to improve the completeness and contiguity of genome assemblies compared to conventional assembly. Moreover, read clouds enabled the placement of antibiotic resistance genes present in multiple copies both within a single draft genome and across multiple organisms. The occurrence of resistance genes associates with the timing of antibiotics administered to the patient, and comparative genomic analysis of the various intestinal E. coli strains across time points as well as the bloodstream isolate showed that the subject's E. coli bloodstream infection likely originated from the intestine. The E. coli genome from the initial pre-transplant stool sample harbors 46 known antimicrobial resistance genes, while all other species from the pre-transplant sample each contain at most 5 genes, consistent with a model of heavy antibiotic exposure resulting in selective outgrowth of the highly antibiotic-resistant E. coli. CONCLUSION: This study demonstrates the application and utility of metagenomic read cloud sequencing and assembly to study the underlying strain-level genomic factors influencing gut microbiome dynamics under extreme selective pressures in the clinical context of HCT.


Assuntos
Microbioma Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Seleção Genética , Sequência de Bases , Biodiversidade , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Microbioma Gastrointestinal/genética , Genes Bacterianos , Humanos , Metagenoma/genética , Microbiota/genética , Análise de Componente Principal , Sintenia/genética
2.
Genome Med ; 12(1): 50, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471482

RESUMO

BACKGROUND: Populations of closely related microbial strains can be simultaneously present in bacterial communities such as the human gut microbiome. We recently developed a de novo genome assembly approach that uses read cloud sequencing to provide more complete microbial genome drafts, enabling precise differentiation and tracking of strain-level dynamics across metagenomic samples. In this case study, we present a proof-of-concept using read cloud sequencing to describe bacterial strain diversity in the gut microbiome of one hematopoietic cell transplantation patient over a 2-month time course and highlight temporal strain variation of gut microbes during therapy. The treatment was accompanied by diet changes and administration of multiple immunosuppressants and antimicrobials. METHODS: We conducted short-read and read cloud metagenomic sequencing of DNA extracted from four longitudinal stool samples collected during the course of treatment of one hematopoietic cell transplantation (HCT) patient. After applying read cloud metagenomic assembly to discover strain-level sequence variants in these complex microbiome samples, we performed metatranscriptomic analysis to investigate differential expression of antibiotic resistance genes. Finally, we validated predictions from the genomic and metatranscriptomic findings through in vitro antibiotic susceptibility testing and whole genome sequencing of isolates derived from the patient stool samples. RESULTS: During the 56-day longitudinal time course that was studied, the patient's microbiome was profoundly disrupted and eventually dominated by Bacteroides caccae. Comparative analysis of B. caccae genomes obtained using read cloud sequencing together with metagenomic RNA sequencing allowed us to identify differences in substrain populations over time. Based on this, we predicted that particular mobile element integrations likely resulted in increased antibiotic resistance, which we further supported using in vitro antibiotic susceptibility testing. CONCLUSIONS: We find read cloud assembly to be useful in identifying key structural genomic strain variants within a metagenomic sample. These strains have fluctuating relative abundance over relatively short time periods in human microbiomes. We also find specific structural genomic variations that are associated with increased antibiotic resistance over the course of clinical treatment.


Assuntos
Bactérias/genética , Microbioma Gastrointestinal/genética , Anti-Infecciosos/farmacologia , Azacitidina/farmacologia , Azitromicina/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Ciprofloxacina/farmacologia , DNA Bacteriano , Dieta , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Genoma Bacteriano , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunossupressores/farmacologia , Masculino , Metagenoma , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/microbiologia , Síndromes Mielodisplásicas/terapia , Mielofibrose Primária/microbiologia , Mielofibrose Primária/terapia , RNA-Seq , Análise de Sequência de DNA
3.
G3 (Bethesda) ; 8(7): 2145-2152, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29794166

RESUMO

Genomic data for the closest relatives of house mice (Mus musculus species complex) are surprisingly limited. Here, we present the first complete genome for a behaviorally and ecologically unique member of the sister clade to house mice, the mound-building mouse, Mus spicilegus Using read cloud sequencing and de novo assembly we produced a 2.50 Gbp genome with a scaffold N50 of 2.27 Mbp. We constructed >25 000 gene models, of which the majority had high homology to other Mus species. To evaluate the utility of the M. spicilegus genome for behavioral and ecological genomics, we extracted 196 vomeronasal receptor (VR) sequences from our genome and analyzed phylogenetic relationships between M. spicilegus VRs and orthologs from M. musculus and the Algerian mouse, M. spretus While most M. spicilegus VRs clustered with orthologs in M. musculus and M. spretus, 10 VRs with evidence of rapid divergence in M. spicilegus are strong candidate modulators of species-specific chemical communication. A high quality assembly and genome for M. spicilegus will help to resolve discordant ancestry patterns in house mouse genomes, and will provide an essential foundation for genetic dissection of phenotypes that distinguish commensal from non-commensal species, and the social and ecological characteristics that make M. spicilegus unique.


Assuntos
Genoma , Genômica , Animais , Biologia Computacional/métodos , Ecologia , Perfilação da Expressão Gênica , Genômica/métodos , Geografia , Hungria , Camundongos , Anotação de Sequência Molecular , Filogenia , Especificidade da Espécie , Transcriptoma
4.
Artigo em Inglês | MEDLINE | ID: mdl-33833903

RESUMO

Low intestinal microbial diversity, often leading to domination of the intestine by a single organism, is associated with poor outcomes following hematopoietic cell transplantation (HCT). Understanding how certain organisms achieve domination in the intestine is limited by current metagenomic sequencing technologies, which are typically unable to reconstruct complete genome drafts without bacterial isolation and culture. Recently, we developed a metagenomic read cloud sequencing approach that provides significantly improved genome drafts for individual organisms compared to conventional short-read sequencing methods. Here, we apply read cloud sequencing to four longitudinal stool samples collected from an HCT patient before and after heavy antibiotic exposure. During this time period, the patient experienced Escherichia coli gut domination and an E. coli bloodstream infection. We find that read clouds enable the placement of multiple copies of antibiotic resistance genes both within and across genomes, and the presence of resistance genes correlates with the timing of antibiotics administered to the patient. Comparative genomic analysis reveals that the E. coli bloodstream infection likely originated from the gut. The pre-transplant E. coli genome harbors 46 known resistance genes, whereas all other organisms from the pre-transplant time point contain 5 or fewer resistance genes, supporting a model in which the E. coli outgrowth was a result of selection by heavy antibiotic exposure. This case study highlights the application of metagenomic read cloud sequencing in a clinical context to elucidate the genomic underpinnings of microbiome dynamics under extreme selective pressures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA