RESUMO
Humans are exposed to xenobiotic mixtures daily through the long-term, low-dose regimen. Investigations designed to simulate this exposure profile approach the real-life risk simulation (RLRS) idea of modern toxicology. The purpose of the present study was to investigate the effects of 12-month exposure of New Zealand rabbits to a xenobiotic mixture comprising seven endocrine disruptors (EDs), which are chemical substances raising great concerns for human health, as well as the herbicide glyphosate, and its commercial formulation Roundup®, on blood and tissues redox status. It is reported herein that at the systemic level, the administration of the EDs mixture induced perturbations of blood redox homeostasis at 3 months, whereas at 6 and 12 months, it activated redox adaptations. Contrariwise, exposure to glyphosate and Roundup®, individually, caused mainly disturbances of blood redox equilibrium. At the tissue level, particularly in the liver, the administration of both the EDs mixture and Roundup® induced oxidative stress, whereas glyphosate did not affect it. The RLRS notion appears to be confirmed through these findings. Indeed, the administration of the EDs mixture and Roundup®, under the long-term, low-dose regimen, elicited detrimental effects on the redox status of the liver, a crucial tissue with a valuable biological role in the detoxification of organisms from xenobiotics.
RESUMO
Olive oil (OO) possesses a predominant role in the diet of Mediterranean countries. According to a health claim approved by the European Food Safety Authority, OO protects against oxidative stressinduced lipid peroxidation in human blood, when it contains at least 5â¯mg of hydroxytyrosol and its derivatives per 20â¯g. However, studies regarding the effects of a total OO biophenols on redox status in vivo are scarce and either observational and do not provide a holistic picture of their action in tissues. Following a series of in vitro screening tests an OO containing biophenols at 800â¯mg/kg of OO was administered for 14 days to male Wistar rats at a dose corresponding to 20â¯g OO/per day to humans. Our results showed that OO reinforced the antioxidant profile of blood, brain, muscle and small intestine, it induced oxidative stress in spleen, pancreas, liver and heart, whereas no distinct effects were observed in lung, colon and kidney. The seemingly negative effects of OO follow the recently formulated idea in toxicology, namely the real life exposure scenario. This study reports that OO, although considered a nutritional source rich in antioxidants, it exerts a tissues specific action when administered in vivo.