RESUMO
The segmented RNA genome of influenza A viruses (IAVs) enables viral evolution through genetic reassortment after multiple IAVs coinfect the same cell, leading to viruses harboring combinations of eight genomic segments from distinct parental viruses. Existing data indicate that reassortant genotypes are not equiprobable; however, the low throughput of available virology techniques does not allow quantitative analysis. Here, we have developed a high-throughput single-cell droplet microfluidic system allowing encapsulation of IAV-infected cells, each cell being infected by a single progeny virion resulting from a coinfection process. Customized barcoded primers for targeted viral RNA sequencing enabled the analysis of 18,422 viral genotypes resulting from coinfection with two circulating human H1N1pdm09 and H3N2 IAVs. Results were highly reproducible, confirmed that genetic reassortment is far from random, and allowed accurate quantification of reassortants including rare events. In total, 159 out of the 254 possible reassortant genotypes were observed but with widely varied prevalence (from 0.038 to 8.45%). In cells where eight segments were detected, all 112 possible pairwise combinations of segments were observed. The inclusion of data from single cells where less than eight segments were detected allowed analysis of pairwise cosegregation between segments with very high confidence. Direct coupling analysis accurately predicted the fraction of pairwise segments and full genotypes. Overall, our results indicate that a large proportion of reassortant genotypes can emerge upon coinfection and be detected over a wide range of frequencies, highlighting the power of our tool for systematic and exhaustive monitoring of the reassortment potential of IAVs.
Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae , Vírus Reordenados/genética , RNA Viral/genética , Análise de Sequência de RNARESUMO
Reassortment is an evolutionary process common in viruses with segmented genomes. These viruses can swap whole genomic segments during cellular co-infection, giving rise to novel progeny formed from the mixture of parental segments. Since large-scale genome rearrangements have the potential to generate new phenotypes, reassortment is important to both evolutionary biology and public health research. However, statistical inference of the pattern of reassortment events from phylogenetic data is exceptionally difficult, potentially involving inference of general graphs in which individual segment trees are embedded. In this paper, we argue that, in general, the number and pattern of reassortment events are not identifiable from segment trees alone, even with theoretically ideal data. We call this fact the fundamental problem of reassortment, which we illustrate using the concept of the "first-infection tree," a potentially counterfactual genealogy that would have been observed in the segment trees had no reassortment occurred. Further, we illustrate four additional problems that can arise logically in the inference of reassortment events and show, using simulated data, that these problems are not rare and can potentially distort our observation of reassortment even in small data sets. Finally, we discuss how existing methods can be augmented or adapted to account for not only the fundamental problem of reassortment, but also the four additional situations that can complicate the inference of reassortment.
Assuntos
Genoma Viral , Filogenia , Vírus Reordenados , Vírus Reordenados/genética , Evolução Molecular , Modelos GenéticosRESUMO
The increased detection of H3 C-IVA (1990.4.a) clade influenza A viruses (IAVs) in US swine in 2019 was associated with a reassortment event to acquire an H1N1pdm09 lineage nucleoprotein (pdmNP) gene, replacing a TRIG lineage NP (trigNP). We hypothesized that acquiring the pdmNP conferred a selective advantage over prior circulating H3 viruses with a trigNP. To investigate the role of NP reassortment in transmission, we identified two contemporary 1990.4.a representative strains (NC/19 and MN/18) with different evolutionary origins of the NP gene. A reverse genetics system was used to generate wild-type (wt) strains and swap the pdm and TRIG lineage NP genes, generating four viruses: wtNC/19-pdmNP, NC/19-trigNP, wtMN/18-trigNP, and MN/18-pdmNP. The pathogenicity and transmission of the four viruses were compared in pigs. All four viruses infected 10 primary pigs and transmitted to five indirect contact pigs per group. Pigs infected via contact with MN/18-pdmNP shed virus 2 days earlier than pigs infected with wtMN/18-trigNP. The inverse did not occur for wtNC/19-pdmNP and NC/19-trigNP. This suggests that pdmNP reassortment resulted in a combination of genes that improved transmission efficiency when paired with the 1990.4.a hemagglutinin (HA). This is likely a multigenic trait, as replacing the trigNP gene did not diminish the transmission of a wild-type IAV in swine. This study demonstrates how reassortment and evolutionary change of internal genes can result in more transmissible viruses that influence HA clade detection frequency. Thus, rapidly identifying novel reassortants paired with dominant hemagglutinin/neuraminidase may improve the prediction of strains to include in vaccines.IMPORTANCEInfluenza A viruses (IAVs) are composed of eight non-continuous gene segments that can reassort during coinfection of a host, creating new combinations. Some gene combinations may convey a selective advantage and be paired together preferentially. A reassortment event was detected in swine in the United States that involved the exchange of two lineages of nucleoprotein (NP) genes (trigNP to pdmNP) that became a predominant genotype detected in surveillance. Using a transmission study, we demonstrated that exchanging the trigNP for a pdmNP caused the virus to shed from the nose at higher levels and transmit to other pigs more rapidly. Replacing a pdmNP with a trigNP did not hinder transmission, suggesting that transmission efficiency depends on interactions between multiple genes. This demonstrates how reassortment alters IAV transmission and that reassortment events can provide an explanation for why genetically related viruses with different internal gene combinations experience rapid fluxes in detection frequency.
Assuntos
Vírus da Influenza A , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Hemaglutininas , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/genética , Suínos , Estados Unidos , Proteínas do Nucleocapsídeo/metabolismoRESUMO
Novel bat H17N10 and H18N11 influenza A viruses (IAVs) are incapable of reassortment with conventional IAVs during co-infection. To date, the underlying mechanisms that inhibit bat and conventional IAV reassortment remain poorly understood. Herein, we used the bat influenza M gene in the PR8 H1N1 virus genetic background to determine the molecular basis that restricts reassortment of segment 7. Our results showed that NEP and M1 from bat H17N10 and H18N11 can interact with PR8 M1 and NEP, resulting in mediating PR8 viral ribonucleoprotein (vRNP) nuclear export and formation of virus-like particles with single vRNP. Further studies demonstrated that the incompatible packaging signals (PSs) of H17N10 or H18N11 M segment led to the failure to rescue recombinant viruses in the PR8 genetic background. Recombinant PR8 viruses (rPR8psH18M and rPR8psH17M) containing bat influenza M coding region flanked with the PR8 M PSs were rescued but displayed lower replication in contrast to the parental PR8 virus, which is due to a low efficiency of recombinant virus uncoating correlating with the functions of the bat M2. Our studies reveal molecular mechanisms of the M gene that hinder reassortment between bat and conventional IAVs, which will help to understand the biology of novel bat IAVs. IMPORTANCE: Reassortment is one of the mechanisms in fast evolution of influenza A viruses (IAVs) and responsible for generating pandemic strains. To date, why novel bat IAVs are incapable of reassorting with conventional IAVs remains completely understood. Here, we attempted to rescue recombinant PR8 viruses with M segment from bat IAVs to understand the molecular mechanisms in hindering their reassortment. Results showed that bat influenza NEP and M1 have similar functions as respective counterparts of PR8 to medicating viral ribonucleoprotein nuclear export. Moreover, the incompatible packaging signals of M genes from bat and conventional IAVs and impaired bat M2 functions are the major reasons to hinder their reassortment. Recombinant PR8 viruses with bat influenza M open reading frames were generated but showed attenuation, which correlated with the functions of the bat M2 protein. Our studies provide novel insights into the molecular mechanisms that restrict reassortment between bat and conventional IAVs.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus Reordenados , Humanos , Vírus Reordenados/genética , Animais , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Quirópteros/virologia , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/genética , Influenza Humana/virologia , Influenza Humana/metabolismo , Células HEK293 , Replicação Viral , Montagem de Vírus/genética , Células Madin Darby de Rim Canino , Cães , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genéticaRESUMO
BACKGROUND: Viral diseases are posing threat to annual production and quality of tobacco in China. Recently, tomato spotted wilt orthotospovirus (TSWV) has been reported to infect three major crops including tobacco. Current study was aimed to investigate the population dynamics and molecular diversity of the TSWV. In the current study, to assess and identify the prevalence and evolutionary history of TSWV in tobacco crops in China, full-length genome sequences of TSWV isolates from tobacco, were identified and analyzed. METHODS: After trimming and validation, sequences of new isolates were submitted to GenBank. We identified the full-length genomes of ten TSWV isolates, infecting tobacco plants from various regions of China. Besides these, six isolates were partially sequenced. Phylogenetic analysis was performed to assess the relativeness of newly identified sequences and corresponding sequences from GenBank. Recombination and population dynamics analysis was performed using RDP4, RAT, and statistical estimation. Reassortment analysis was performed using MegaX software. RESULTS: Phylogenetic analysis of 41 newly identified sequences, depicted that the majority of the Chinese isolates have separate placement in the tree. RDP4 software predicted that RNA M of newly reported isolate YNKM-2 had a recombinant region spanning from 3111 to 3811 bp. The indication of parental sequences (YNKMXD and YNHHKY) from newly identified isolates, revealed the conservation of local TSWV population. Genetic diversity and population dynamics analysis also support the same trend. RNA M was highlighted to be more capable of mutating or evolving as revealed by data obtained from RDP4, RAT, population dynamics, and phylogenetic analyses. Reassortment analysis revealed that it might have happened in L segment of TSWV isolate YNKMXD (reported herein). CONCLUSION: Taken together, this is the first detailed study revealing the pattern of TWSV genetic diversity, and population dynamics helping to better understand the ability of this pathogen to drastically reduce the tobacco production in China. Also, this is a valuable addition to the existing worldwide profile of TSWV, especially in China, where a few studies related to TSWV have been reported including only one complete genome of this virus isolated from tobacco plants.
Assuntos
Vírus de RNA , Solanum lycopersicum , Filogenia , Evolução Biológica , China , Produtos Agrícolas , Nicotiana , RNARESUMO
Sporadic cases and outbreaks of Crimean-Congo hemorrhagic fever (CCHF) have been documented across Pakistan since 1976; however, data regarding the diversity of CCHF virus (CCHFV) in Pakistan is sparse. We whole-genome sequenced 36 CCHFV samples collected from persons infected in Pakistan during 2017-2020. Most CCHF cases were from Rawalpindi (n = 10), followed by Peshawar (n = 7) and Islamabad (n = 4). Phylogenetic analysis revealed the Asia-1 genotype was dominant, but 4 reassorted strains were identified. Strains with reassorted medium gene segments clustered with Asia-2 (n = 2) and Africa-2 (n = 1) genotypes; small segment reassortments clustered with the Asia-2 genotype (n = 2). Reassorted viruses showed close identity with isolates from India, Iran, and Tajikistan, suggesting potential crossborder movement of CCHFV. Improved and continuous human, tick, and animal surveillance is needed to define the diversity of circulating CCHFV strains in Pakistan and prevent transmission.
Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Humanos , Febre Hemorrágica da Crimeia/epidemiologia , Filogenia , Paquistão/epidemiologia , Análise de Sequência de DNARESUMO
In early 2024, explosive outbreaks of Oropouche virus (OROV) linked to a novel lineage were documented in the Amazon Region of Brazil. We report the introduction of this lineage into Colombia and its co-circulation with another OROV lineage. Continued surveillance is needed to prevent further spread of OROV in the Americas.
Assuntos
Infecções por Bunyaviridae , Orthobunyavirus , Filogenia , Colômbia/epidemiologia , Humanos , Orthobunyavirus/genética , Orthobunyavirus/classificação , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/virologia , Surtos de Doenças , Brasil/epidemiologiaRESUMO
On 2 February 2024, the Pan American Health Organization/World Health Organization issued an epidemiological alert on rising Oropouche virus (OROV) infections in South America. By 3 August 2024, this alert level had escalated from medium to high. OROV has been a public health concern in Central and South America since its emergence in Brazil in the 1960s. However, the 2024 outbreak marks a turning point, with the sustained transmission in non-endemic regions of Brazil, local transmission in Cuba, two fatalities and several cases of vertical transmission. As of the end of August 2024, 9852 OROV cases have been confirmed. The 2024 OROV outbreak underscores critical gaps in our understanding of OROV pathogenesis and highlights the urgent need for antivirals and vaccines. This review aims to provide a concise overview of OROV, a neglected orthobunyavirus.
Assuntos
Infecções por Bunyaviridae , Orthobunyavirus , Orthobunyavirus/genética , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/virologia , Infecções por Bunyaviridae/transmissão , Humanos , Animais , Surtos de Doenças , Doenças Transmissíveis Emergentes/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/transmissão , América do Sul/epidemiologiaRESUMO
Segmented RNA viruses are capable of exchanging genome segments via reassortment as a means of immune evasion and to maintain viral fitness. Reassortments of single-genome segments are common among group A rotaviruses. Multiple instances of co-reassortment of two genome segments, GS6(VP6) and GS10(NSP4), have been documented in surveillance. Specifically, a division between NSP4 genotypes has been observed in the NSP4 double-layered particle (DLP)-binding domain. A previously hypothesized mechanism for this co-reassortment has been suggested to be the interaction between VP6 and NSP4 during DLP transport from viroplasms for particle maturation. In this study, we used sequence analysis, RNA secondary structure prediction, molecular dynamics and reverse genetics to form a hypothesis regarding the role of the NSP4 DLP-binding domain. Sequence analysis showed that the polarity of NSP4 DLP-binding domain amino acids 169 and 174 is clearly divided between E1 and E2 NSP4 genotypes. Viruses with E1 NSP4s had 169A/I or 169S/T with 174S. E2 NSP4s had 169R/K and 174A. RNA secondary structure prediction showed that mutation in both 545 (aa169) and 561 (aa174) causes global structure remodelling. Molecular dynamics showed that the NSP4/VP6 interaction stability is increased by mutating both aa positions 169 and 174. Using reverse genetics, we showed that an R169I mutation alone does not prevent rescue. Conversely, 174A to 174S prevented rescue, and rescue could be returned by combining 174S with 169I. When compared to rSA11 NSP4-wt, both rSA11 NSP4-R169I and rSA11 NSP4-R169I/A174S had a negligible but significant reduction in titre at specific time points. This study suggests that amino acid 174 of NSP4 may be essential in maintaining the VP6/NSP4 interaction required for DLP transport. Our results suggest that maintenance of specific polarities of amino acids at positions 169 and 174 may be required for the fitness of rotavirus field strains.
Assuntos
Rotavirus , Toxinas Biológicas , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Rotavirus/genética , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Toxinas Biológicas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicoproteínas/química , RNA Viral/genética , RNA Viral/metabolismo , Ligação Proteica , Simulação de Dinâmica Molecular , Vírus Reordenados/genética , Genótipo , Sequência de Aminoácidos , Animais , Aminoácidos/genética , Aminoácidos/metabolismo , Conformação de Ácido NucleicoRESUMO
Rift Valley fever virus (RVFV) is a mosquito-borne RNA virus of the Phlebovirus genus in the phenuviridae family. Its genome is trisegmented with small (S), medium (M) and large (L) fragments. In nature, the virus exists as a single serotype that is responsible for outbreaks of Rift Valley fever (RVF), a zoonotic disease that often occurs in Africa and the Middle East. RVFV genomes are thought to undergo both recombination and reassortment and investigations of these events is important for monitoring the emergence of virulent strains and understanding the evolutionary characteristics of this virus. The aim of this study was to characterize the genomes of RVFV isolates from cattle, sheep, and goats collected during an interepidemic period in Kenya between June 2016 and November 2021. A total of 691 serum samples from cattle (n = 144), goats (n = 185) and sheep (n = 362) were analysed at the Central Veterinary Laboratories. The competitive IgM-capture ELISA, was used to screen the samples; 205 samples (29.67%) tested positive for RVFV. Of the 205 positive samples, 42 (20.5%) were from cattle, 57 (27.8%) from goats, and 106 (51.7%) from sheep. All the IgM-positive samples were further analyzed by qPCR, and 24 (11.71%) tested positive with Ct values ranging from 14.788 to 38.286. Two samples, 201808HABDVS from sheep and 201810CML3DVS from cattle, had Ct values of less than 20.0 and yielded whole genome sequences with 96.8 and 96.4 coverage, respectively. There was no statistically significant evidence of recombination in any of the three segments and also phylogenetic analysis showed no evidence of reassortment in the two isolated RVFV segments when compared with other isolates of different lineages from previous outbreaks whose genomes are deposited in the GenBank. No evidence of reassortment leaves room for other factors to be the most probable contributors of change in virulence, pathogenicity and emergence of highly virulent strains of the RVFV.
Assuntos
Doenças dos Bovinos , Genoma Viral , Doenças das Cabras , Cabras , Filogenia , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Animais , Cabras/virologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/isolamento & purificação , Ovinos , Febre do Vale de Rift/virologia , Febre do Vale de Rift/epidemiologia , Bovinos , Quênia/epidemiologia , Doenças das Cabras/virologia , Doenças das Cabras/epidemiologia , Doenças dos Ovinos/virologia , Doenças dos Ovinos/epidemiologia , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterináriaRESUMO
Cotton is one of the most salient cash crops globally and in the United States. Lately, several virus-like diseases have been reported from cotton in the United States such as the tobacco ringspot virus (TRSV) in Oklahoma. TRSV has been reported from various hosts worldwide with minimal phylogenetic examination. In this study, complete genome sequences of four TRSV isolates from cotton were isolated, and the genetic diversity was investigated along with additional available TRSV isolates retrieved from GenBank. Phylogenetic analysis based on the complete RNA1 and RNA2 sequences distributed all TRSV isolates into three major phylogenetic clades exhibiting a differential clade composition depending on the segment. The TRSV cotton isolates exhibited differential grouping between the RNA1 and RNA2 analyses. Additionally, monophyletic subclades of isolates appeared to be conserved between both segments. Thirty-five recombination events in RNA1 and 23 in RNA2 were identified with implications in the variation of the phylogenetic analyses. Furthermore, multiple hypotheses of TRSV evolution were generated based on the phylogenetic analyses, but to test them, more complete genomes of TRSV will be needed. This study provides the first complete genome analysis of TRSV isolates infecting cotton in the United States and a detailed analysis of global TRSV isolates.
Assuntos
Gossypium , Nepovirus , Oklahoma , Filogenia , Variação GenéticaRESUMO
Bluetongue virus (BTV) is a segmented, double-stranded RNA virus transmitted by Culicoides midges that infects ruminants. As global temperatures increase and geographical ranges of midges expand, there is increased potential for BTV outbreaks from incursions of novel serotypes into endemic regions. However, an understanding of the effect of temperature on reassortment is lacking. The objectives of this study were to compare how temperature affected Culicoides survival, virogenesis, and reassortment in Culicoides sonorensis coinfected with two BTV serotypes. Midges were fed blood meals containing BTV-10, BTV-17, or BTV serotype 10 and 17 and maintained at 20 °C, 25 °C, or 30 °C. Midge survival was assessed, and pools of midges were collected every other day to evaluate virogenesis of BTV via qRT-PCR. Additional pools of coinfected midges were collected for BTV plaque isolation. The genotypes of plaques were determined using next-generation sequencing. Warmer temperatures impacted traits related to vector competence in offsetting ways: BTV replicated faster in midges at warmer temperatures, but midges did not survive as long. Overall, plaques with BTV-17 genotype dominated, but BTV-10 was detected in some plaques, suggesting parental strain fitness may play a role in reassortment outcomes. Temperature adds an important dimension to host-pathogen interactions with implications for transmission and evolution.
Assuntos
Vírus Bluetongue , Ceratopogonidae , Chironomidae , Coinfecção , Animais , Temperatura , Vírus Bluetongue/genética , SorogrupoRESUMO
1. Infectious bursal disease (IBD) is an acute, highly contagious viral disease of chickens caused by a virus (IBDV) which has a bi-segmented, double-stranded RNA genome. It has five viral proteins in its structure; the VP1 gene is encoded in segment B and the other four are in segment A.2. In this study, bursae of Fabricius and spleen samples taken from chickens suspected of having clinical or subclinical IBD from a total of 50 chicken flocks located in different geographical regions of Turkey were examined.3. The RT-PCR analysis of the VP2 gene showed that 30 of the 50 samples (60%) tested positive. Eight positive isolates were chosen and RT-PCR was performed to amplify the VP1 gene.4. The study showed that reassortant field strains that cause clinical or subclinical disease are currently circulating in broiler flocks across Turkey.
RESUMO
The continuous evolution of avian influenza viruses (AIVs) of subtype H3 in China and the emergence of human infection with AIV subtype H3N8 highlight their threat to public health. Through surveillance in poultry-associated environments during 2009-2022, we isolated and sequenced 188 H3 AIVs across China. Performing large-scale sequence analysis with publicly available data, we identified 4 sublineages of H3 AIVs established in domestic ducks in China via multiple introductions from wild birds from Eurasia. Using full-genome analysis, we identified 126 distinct genotypes, of which the H3N2 G23 genotype predominated recently. H3N8 G25 viruses, which spilled over from birds to humans, might have been generated by reassortment between H3N2 G23, wild bird H3N8, and poultry H9N2 before February 2021. Mammal-adapted and drug-resistance substitutions occasionally occurred in H3 AIVs. Ongoing surveillance for H3 AIVs and risk assessment are imperative for potential pandemic preparedness.
Assuntos
Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Humanos , Animais , Vírus da Influenza A Subtipo H3N8/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H9N2/genética , Genoma Viral , Filogenia , Aves , Aves Domésticas , China/epidemiologia , MamíferosRESUMO
Influenza A viruses are a One Health threat because they can spill over between host populations, including among humans, swine, and birds. Surveillance of swine influenza virus in Hanoi, Vietnam, during 2013-2019 revealed gene pool enrichment from imported swine from Asia and North America and showed long-term maintenance, persistence, and reassortment of virus lineages. Genome sequencing showed continuous enrichment of H1 and H3 diversity through repeat introduction of human virus variants and swine influenza viruses endemic in other countries. In particular, the North American H1-δ1a strain, which has a triple-reassortant backbone that potentially results in increased human adaptation, emerged as a virus that could pose a zoonotic threat. Co-circulation of H1-δ1a viruses with other swine influenza virus genotypes raises concerns for both human and animal health.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Humanos , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Vietnã/epidemiologia , Vírus da Influenza A Subtipo H1N1/genética , Doenças dos Suínos/epidemiologia , Vírus da Influenza A/genéticaRESUMO
The structured coalescent allows inferring migration patterns between viral subpopulations from genetic sequence data. However, these analyses typically assume that no genetic recombination process impacted the sequence evolution of pathogens. For segmented viruses, such as influenza, that can undergo reassortment this assumption is broken. Reassortment reshuffles the segments of different parent lineages upon a coinfection event, which means that the shared history of viruses has to be represented by a network instead of a tree. Therefore, full genome analyses of such viruses are complex or even impossible. Although this problem has been addressed for unstructured populations, it is still impossible to account for population structure, such as induced by different host populations, whereas also accounting for reassortment. We address this by extending the structured coalescent to account for reassortment and present a framework for investigating possible ties between reassortment and migration (host jump) events. This method can accurately estimate subpopulation dependent effective populations sizes, reassortment, and migration rates from simulated data. Additionally, we apply the new model to avian influenza A/H5N1 sequences, sampled from two avian host types, Anseriformes and Galliformes. We contrast our results with a structured coalescent without reassortment inference, which assumes independently evolving segments. This reveals that taking into account segment reassortment and using sequencing data from several viral segments for joint phylodynamic inference leads to different estimates for effective population sizes, migration, and clock rates. This new model is implemented as the Structured Coalescent with Reassortment package for BEAST 2.5 and is available at https://github.com/jugne/SCORE.
Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Humana , Animais , Genoma Viral , Humanos , Virus da Influenza A Subtipo H5N1/genética , Filogenia , Vírus Reordenados/genéticaRESUMO
Unlike many segmented negative-sense RNA viruses, most members of the Bunyavirales bud at Golgi membranes, as opposed to the plasma membrane. Central players in this assembly process are the envelope glycoproteins, Gn and Gc, which upon translation undergo proteolytic processing, glycosylation and trafficking to the Golgi, where they interact with ribonucleoprotein genome segments and bud into Golgi-derived compartments. The processes involved in genome packaging during virion assembly can lead to the generation of reassorted viruses, if a cell is co-infected with two different bunyaviruses, due to mismatching of viral genome segment packaging. This can lead to viruses with high pathogenic potential, as demonstrated by the emergence of Schmallenberg virus. This review focuses on the assembly pathways of tri-segmented bunyaviruses, highlighting some areas in need of further research to understand these important pathogens with zoonotic potential.
Assuntos
Orthobunyavirus , Vírus de RNA , Orthobunyavirus/genética , Glicosilação , Montagem de VírusRESUMO
The coat protein (CP) of plant viruses generally has multiple functions involving infection, replication, movement and pathogenicity. Functions of the CP of prunus necrotic ringspot virus (PNRSV), the causal agent of several threatening diseases of Prunus fruit trees, are poorly studied. Previously, we identified a novel virus in apple, apple necrotic mosaic virus (ApNMV), which is phylogenetically related to PNRSV and probably associated with apple mosaic disease in China. Full-length cDNA clones of PNRSV and ApNMV were constructed, and both are infectious in cucumber (Cucumis sativus L.), an experimental host. PNRSV exhibited higher systemic infection efficiency with more severe symptoms than ApNMV. Reassortment analysis of genomic RNA segments 1-3 found that RNA3 of PNRSV could enhance the long-distance movement of an ApNMV chimaera in cucumber, indicating the association of RNA3 of PNRSV with viral long-distance movement. Deletion mutagenesis of the PNRSV CP showed that the basic motif from amino acids 38 to 47 was crucial for the CP to maintain the systemic movement of PNRSV. Moreover, we found that arginine residues 41, 43 and 47 codetermine viral long-distance movement. The findings demonstrate that the CP of PNRSV is required for long-distance movement in cucumber, which expands the functions of ilarvirus CPs in systemic infection. For the first time, we identified involvement of Ilarvirus CP protein during long-distance movement.
Assuntos
Ilarvirus , Prunus , Ilarvirus/genética , Ilarvirus/metabolismo , RNA Viral/metabolismo , Prunus/genética , ChinaRESUMO
From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.
Assuntos
Surtos de Doenças , Gammainfluenzavirus/classificação , Gammainfluenzavirus/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Vírus Reordenados , Hemaglutininas Virais/química , Hemaglutininas Virais/genética , Hong Kong/epidemiologia , Humanos , Modelos Moleculares , Mutação , Filogenia , Vigilância em Saúde Pública , Análise de Sequência de DNA , Relação Estrutura-Atividade , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genéticaRESUMO
Reassortment, or genome segment exchange, increases diversity among viruses with segmented genomes. Previous studies on the limitations of reassortment have largely focused on parental incompatibilities that restrict generation of viable progeny. However, less is known about whether factors intrinsic to virus replication influence reassortment. Mammalian orthoreovirus (reovirus) encapsidates a segmented, double-stranded RNA (dsRNA) genome, replicates within cytoplasmic factories, and is susceptible to host antiviral responses. We sought to elucidate the influence of infection multiplicity, timing, and compartmentalized replication on reovirus reassortment in the absence of parental incompatibilities. We used an established post-PCR genotyping method to quantify reassortment frequency between wild-type and genetically barcoded type 3 reoviruses. Consistent with published findings, we found that reassortment increased with infection multiplicity until reaching a peak of efficient genome segment exchange during simultaneous coinfection. However, reassortment frequency exhibited a substantial decease with increasing time to superinfection, which strongly correlated with viral transcript abundance. We hypothesized that physical sequestration of viral transcripts within distinct virus factories or superinfection exclusion also could influence reassortment frequency during superinfection. Imaging revealed that transcripts from both wild-type and barcoded viruses frequently co-occupied factories, with superinfection time delays up to 16 h. Additionally, primary infection progressively dampened superinfecting virus transcript levels with greater time delay to superinfection. Thus, in the absence of parental incompatibilities and with short times to superinfection, reovirus reassortment proceeds efficiently and is largely unaffected by compartmentalization of replication and superinfection exclusion. However, reassortment may be limited by superinfection exclusion with greater time delays to superinfection. IMPORTANCE Reassortment, or genome segment exchange between viruses, can generate novel virus genotypes and pandemic virus strains. For viruses to reassort their genome segments, they must replicate within the same physical space by coinfecting the same host cell. Even after entry into the host cell, many viruses with segmented genomes synthesize new virus transcripts and assemble and package their genomes within cytoplasmic replication compartments. Additionally, some viruses can interfere with subsequent infection of the same host or cell. However, spatial and temporal influences on reassortment are only beginning to be explored. We found that infection multiplicity and transcript abundance are important drivers of reassortment during coinfection and superinfection, respectively, for reovirus, which has a segmented, double-stranded RNA genome. We also provide evidence that compartmentalization of transcription and packaging is unlikely to influence reassortment, but the length of time between primary and subsequent reovirus infection can alter reassortment frequency.