RESUMO
BACKGROUND: Adverse environmental exposure during the prenatal period can lead to diseases in the offspring, including hypertension. Whether or not the hypertensive phenotype can be transgenerationally transmitted is not known. METHODS: Pregnant Sprague Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) on gestation days 6, 8, 10, and 12 to generate the prenatal LPS exposure model. Blood pressure was monitored by both telemetry and tail-cuff method. RNA sequencing was performed to analyze transcriptome alteration in the kidney of the third generation. Tempol and spironolactone were used to test the potential preventative and therapeutic effect of targeting reactive oxygen species and mineralocorticoid receptor signaling, respectively. Molecular biological experiments were performed to illustrate the mechanism of epigenetic and transcription regulation. RESULTS: Prenatal LPS exposure can impair the ability to excrete a salt load and induce hypertension from the first to the third generations, with the fourth and fifth generations, inducing salt-sensitive hypertension. Compared with control pups, the transcriptome in the kidney of the hypertensive third-generation prenatal LPS-exposed offspring have upregulation of the Ras-related C3 botulinum toxin substrate 1 (Rac1) gene and activation of mineralocorticoid receptor signaling. Furthermore, we found that LPS exposure during pregnancy triggered oxidative stress that upregulated KDM3B (histone lysine demethylase 3B) in the oocytes of first-generation female rats, leading to an inheritable low level of H3K9me2 (histone H3 lysine 9 dimethylation), resulting in the transgenerational upregulation of Rac1. Based on these findings, we treated the LPS-exposed pregnant rats with the reactive oxygen species scavenger, tempol, which successfully prevented hypertension in the first-generation offspring and the transgenerational inheritance of hypertension. CONCLUSIONS: These findings show that adverse prenatal exposure induces transgenerational hypertension through an epigenetic-regulated mechanism and identify potentially preventive and therapeutic strategies for hypertension.
Assuntos
Hipertensão , Efeitos Tardios da Exposição Pré-Natal , Animais , Óxidos N-Cíclicos , Feminino , Histona Desmetilases , Histonas , Hipertensão/induzido quimicamente , Hipertensão/genética , Histona Desmetilases com o Domínio Jumonji , Lipopolissacarídeos/toxicidade , Lisina , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Receptores de Mineralocorticoides/genética , Marcadores de Spin , Espironolactona , Proteínas rac1 de Ligação ao GTP/genéticaRESUMO
RATIONALE: The MR (mineralocorticoid receptor) antagonists belong to the current therapeutic armamentarium for the management of cardiovascular diseases, but the mechanisms conferring their beneficial effects are poorly understood. Part of the cardiovascular effects of MR is because of the regulation of L-type Cav1.2 Ca2+ channel expression, which is generated by tissue-specific alternative promoters as a long cardiac or short vascular N-terminal transcripts. OBJECTIVE: To analyze the molecular mechanisms by which aldosterone, through MR, modulates Cav1.2 expression and function in a tissue-specific manner. METHODS AND RESULTS: In primary cultures of neonatal rat ventricular myocytes, aldosterone exposure for 24 hours increased in a concentration-dependent manner long cardiac Cav1.2 N-terminal transcripts expression at both mRNA and protein levels, correlating with enhanced concentration-, time-, and MR-dependent P1-promoter activity. In silico analysis and mutagenesis identified MR interaction with both specific activating and repressing DNA-binding elements on the P1-promoter. The relevance of this regulation is confirmed both ex and in vivo in transgenic mice harboring the luciferase reporter gene under the control of the cardiac P1-promoter. Moreover, we show that this cis-regulatory mechanism is not limited to the heart. Indeed, in smooth muscle cells from different vascular beds, in which the short vascular Cav1.2 N-terminal transcripts is normally the major isoform, we found that MR signaling activates long cardiac Cav1.2 N-terminal transcripts expression through P1-promoter activation, leading to vascular contractile dysfunction. These results were further corroborated in hypertensive aldosterone/salt rodent models, showing notably a positive correlation between blood pressure and cardiac P1-promoter activity in aorta. This new vascular long cardiac Cav1.2 N-terminal transcripts molecular signature reduced sensitivity to the Ca2+ channel blocker, nifedipine, in aldosterone-treated vessels. CONCLUSIONS: Our results reveal that MR acts as a transcription factor to translate aldosterone signal into specific cardiac P1-promoter activation that might influence the therapeutic outcome of cardiovascular diseases.
Assuntos
Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Receptores de Mineralocorticoides/metabolismo , Ativação Transcricional , Aldosterona/farmacologia , Animais , Canais de Cálcio Tipo L/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos WistarRESUMO
OBJECTIVE: MR (mineralocorticoid receptor) activation is associated with cardiovascular ischemia in humans. This study explores the role of the MR in atherosclerotic mice of both sexes and identifies a sex-specific role for endothelial cell (EC)-MR in vascular inflammation. Approach and Results: In the AAV-PCSK9 (adeno-associated virus-proprotein convertase subtilisin/kexin type 9) mouse atherosclerosis model, MR inhibition attenuated vascular inflammation in males but not females. Further studies comparing male and female littermates with intact MR or EC-MR deletion revealed that although EC-MR deletion did not affect plaque size in either sex, it reduced aortic arch inflammation specifically in male mice as measured by flow cytometry. Moreover, MR-intact females had larger plaques but were protected from vascular inflammation compared with males. Intravital microscopy of the mesenteric vasculature demonstrated that EC-MR deletion attenuated TNFα (tumor necrosis factor α)-induced leukocyte slow rolling and adhesion in males, while females exhibited fewer leukocyte-endothelial interactions with no additional effect of EC-MR deletion. These effects corresponded with decreased TNFα-induced expression of the endothelial adhesion molecules ICAM-1 (intercellular adhesion molecule-1) and E-selectin in males with EC-MR deletion compared with MR-intact males and females of both genotypes. These observations were also consistent with MR and estrogen regulation of ICAM-1 transcription and E-selectin expression in primary cultured mouse ECs and human umbilical vein ECs. CONCLUSIONS: In male mice, EC-MR deletion attenuates leukocyte-endothelial interactions, plaque inflammation, and expression of E-selectin and ICAM-1, providing a potential mechanism by which the MR promotes vascular inflammation. In females, plaque inflammation and leukocyte-endothelial interactions are decreased relative to males and EC-MR deletion is not protective.
Assuntos
Aterosclerose/complicações , Células Endoteliais/fisiologia , Receptores de Mineralocorticoides/fisiologia , Vasculite/etiologia , Animais , Células Cultivadas , Selectina E/genética , Feminino , Molécula 1 de Adesão Intercelular/genética , Leucócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Caracteres SexuaisRESUMO
Primary aldosteronism (PA) is the most common form of secondary hypertension. In many cases, somatic mutations in ion channels and pumps within adrenal cells initiate the pathogenesis of PA, and this mechanism might explain why PA is so common and suggests that milder and evolving forms of PA must exist. Compared with primary hypertension, PA causes more end-organ damage and is associated with excess cardiovascular morbidity, including heart failure, stroke, nonfatal myocardial infarction, and atrial fibrillation. Screening is simple and readily available, and targeted therapy improves blood pressure control and mitigates cardiovascular morbidity. Despite these imperatives, screening rates for PA are low, and mineralocorticoid-receptor antagonists are underused for hypertension treatment. After the evidence for the prevalence of PA and its associated cardiovascular morbidity is summarized, a practical approach to PA screening, referral, and management is described. All physicians who treat hypertension should routinely screen appropriate patients for PA.
Assuntos
Glândulas Suprarrenais/metabolismo , Aldosterona/sangue , Pressão Sanguínea , Hiperaldosteronismo , Hipertensão , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/fisiopatologia , Glândulas Suprarrenais/cirurgia , Adrenalectomia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Humanos , Hiperaldosteronismo/sangue , Hiperaldosteronismo/epidemiologia , Hiperaldosteronismo/fisiopatologia , Hiperaldosteronismo/terapia , Hipertensão/sangue , Hipertensão/epidemiologia , Hipertensão/fisiopatologia , Hipertensão/terapia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Medição de Risco , Fatores de Risco , Resultado do TratamentoRESUMO
OBJECTIVE: Abdominal aortic aneurysm (AAA) has high mortality rate when ruptured, but currently, there is no proven pharmacological therapy for AAA because of our poor understanding of its pathogenesis. The current study explored a novel role of smooth muscle cell (SMC) BMAL1 (brain and muscle Arnt-like protein-1)-a transcription factor known to regulate circadian rhythm-in AAA development. APPROACH AND RESULTS: SMC-selective deletion of BMAL1 potently protected mice from AAA induced by (1) MR (mineralocorticoid receptor) agonist deoxycorticosterone acetate or aldosterone plus high salt intake and (2) angiotensin II infusion in hypercholesterolemia mice. Aortic BMAL1 was upregulated by deoxycorticosterone acetate-salt, and deletion of BMAL1 in SMCs selectively upregulated TIMP4 (tissue inhibitor of metalloproteinase 4) and suppressed deoxycorticosterone acetate-salt-induced MMP (matrix metalloproteinase) activation and elastin breakages. Moreover, BMAL1 bound to the Timp4 promoter and suppressed Timp4 transcription. CONCLUSIONS: These results reveal an important, but previously unexplored, role of SMC BMAL1 in AAA. Moreover, these results identify TIMP4 as a novel target of BMAL1, which may mediate the AAA protective effect of SMC BMAL1 deletion.
Assuntos
Fatores de Transcrição ARNTL/deficiência , Aneurisma da Aorta Abdominal/prevenção & controle , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição ARNTL/genética , Aldosterona , Angiotensina II , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Sítios de Ligação , Acetato de Desoxicorticosterona , Dilatação Patológica , Modelos Animais de Doenças , Elastina/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Regiões Promotoras Genéticas , Cloreto de Sódio na Dieta , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Transcrição Gênica , Inibidor Tecidual 4 de MetaloproteinaseAssuntos
Algoritmos , Medicina Baseada em Evidências/métodos , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Humanos , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Neprilisina/antagonistas & inibidores , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Volume SistólicoRESUMO
OBJECTIVE: Vascular remodeling occurs after endothelial injury, resulting in smooth muscle cell (SMC) proliferation and vascular fibrosis. We previously demonstrated that the blood pressure-regulating hormone aldosterone enhances vascular remodeling in mice at sites of endothelial injury in a placental growth factor-dependent manner. We now test the hypothesis that SMC mineralocorticoid receptors (MRs) directly mediate the remodeling effects of aldosterone and further explore the mechanism. APPROACH AND RESULTS: A wire-induced carotid injury model was performed in wild-type mice and mice with inducible SMC-specific deletion of the MR. Aldosterone did not affect re-endothelialization after injury in wild-type mice. Deletion of SMC-MR prevented the 79% increase in SMC proliferation induced by aldosterone after injury in MR-Intact littermates. Moreover, both injury-induced and aldosterone-enhanced vascular fibrosis were attenuated in SMC-specific MR knockout mice. Further exploration of the mechanism revealed that aldosterone-induced vascular remodeling is prevented by in vivo blockade of the placental growth factor-specific receptor, type 1 vascular endothelial growth factor receptor (VEGFR1), the receptor for placental growth factor. Immunohistochemistry of carotid vessels shows that the induction of VEGFR1 expression in SMC after vascular injury is attenuated by 72% in SMC-specific MR knockout mice. Moreover, aldosterone induction of vascular placental growth factor mRNA expression and protein release are also prevented in vessels lacking SMC-MR. CONCLUSIONS: These studies reveal that SMC-MR is necessary for aldosterone-induced vascular remodeling independent of renal effects on blood pressure. SMC-MR contributes to induction of SMC VEGFR1 in the area of vascular injury and to aldosterone-enhanced vascular placental growth factor expression and hence the detrimental effects of aldosterone are prevented by VEGFR1 blockade. This study supports exploring MR antagonists and VEGFR1 blockade to prevent pathological vascular remodeling induced by aldosterone.
Assuntos
Aldosterona/farmacologia , Lesões das Artérias Carótidas/metabolismo , Proliferação de Células/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Receptores de Mineralocorticoides/agonistas , Animais , Anticorpos/farmacologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fator de Crescimento Placentário , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , RNA Mensageiro/metabolismo , Receptores de Mineralocorticoides/deficiência , Receptores de Mineralocorticoides/genética , Fatores de Tempo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismoAssuntos
Hipertensão , Receptores de Mineralocorticoides , Pressão Sanguínea , Humanos , Interferon gama , Linfócitos TRESUMO
OBJECTIVEï¼To elucidate the mechanism by which Huoxue Jiedu Huayu recipe (, HJHR) regulates angiogenesis in the contralateral kidney of unilateral ureteral obstruction (UUO) rats and the mechanism by which it reduces of renal fibrosis. METHODS: Male Wistar rats were randomly divided into 4 groups: the sham group, UUO group (180 d of left ureter ligation), UUO plus eplerenone (EPL) group, and UUO plus HJHR group. After 180 d of oral drug administration, blood and contralateral kidneys were collected for analysis. Angiogenesis- and fibrosis-related indexes were detected. RESULTS: HJHR and EPL improved structural damage and renal interstitial fibrosis in the contralateral kidney and reduced the protein expression levels of α-smooth muscle actin (α-SMA), vimentin and collagen I. Moreover, these treatments could reduce the expression of vascular endothelial growth factor-A (VEGFA) by inhibiting the infiltration of macrophages. Furthermore, HJHR and EPL significantly reduced the expression of CD34 and CD105 by downregulating VEGFA production, which inhibited angiogenesis. Finally, the coexpressions of CD34, CD105 and α-SMA were decreased in the HJHR and EPL groups, indicating that endothelial-to-mesenchymal transition was inhibited. CONCLUSIONS: These findings confirm that HJHR alleviates contralateral renal fibrosis by inhibiting VEGFA-induced angiogenesis, encourage the use of HJHR against renal interstitial fibrosis and provide a theoretical basis for the clinical management of patients with CKD.
Assuntos
Medicamentos de Ervas Chinesas , Fibrose , Rim , Macrófagos , Ratos Wistar , Obstrução Ureteral , Fator A de Crescimento do Endotélio Vascular , Animais , Masculino , Obstrução Ureteral/metabolismo , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/genética , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Rim/efeitos dos fármacos , Rim/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Nefropatias/etiologia , Nefropatias/genética , AngiogêneseRESUMO
BACKGROUND: Renin suppression in primary aldosteronism indicates mineralocorticoid receptor activation via excessive aldosterone secretion, inducing renal damage. We investigated whether the reversal of renin suppression after the initiation of mineralocorticoid receptor antagonist therapy was associated with long-term renal outcomes in medically treated patients with primary aldosteronism. METHODS: This retrospective cohort study included 318 patients with primary aldosteronism treated with mineralocorticoid receptor antagonist between 2008 and 2020 at the Yokohama Rosai Hospital in Japan. The posttreatment renin status was defined as unsuppressed (ie, reversal of renin suppression) when individual plasma renin activity after the initiation of mineralocorticoid receptor antagonist (post-plasma renin activity) was ≥1.0 ng/mL per hour; otherwise, it was defined as suppressed. We analyzed the association of posttreatment renin status with subsequent longitudinal estimated glomerular filtration rate changes using linear mixed-effects models for repeated measurements, adjusting for potential confounders. RESULTS: The posttreatment renin status of 119 patients was unsuppressed (median post-plasma renin activity, 1.7 ng/mL per hour) and that of 199 patients was suppressed (median post-PRA, 0.5 ng/mL per hour). Through the median follow-up period of 3.1 years, the decline in estimated glomerular filtration rate was milder among patients with the unsuppressed posttreatment renin (-0.46 [95% CI, -0.63 to -0.28] mL/min per 1.73 m2 per year) than those with suppressed posttreatment renin (-1.41 [95% CI, -1.56 to -1.27] mL/min per 1.73 m2 per year; difference, 0.96 [95% CI, 0.72-1.20] mL/min per 1.73 m2 per year). CONCLUSIONS: Our findings may highlight the importance of reversing renin suppression with optimal mineralocorticoid receptor antagonist titration in medically treated primary aldosteronism, which could mitigate adverse renal outcomes.
Assuntos
Hiperaldosteronismo , Hipertensão , Humanos , Renina , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Estudos Retrospectivos , Rim , Aldosterona , Hipertensão/complicaçõesRESUMO
OBJECTIVE: To investigated the effects of suspended moxibustion stimulating Shenshu (BL23) and Guanyuan (CV4) acupoints on the amygdala and HPA axis in our rat model and elucidated the possible molecular mechanisms of moxibustion on kidney- deficiency symptom pattern (KYDS). METHODS: Sixty male Sprague Dawley rats were randomly divided into a control group ( 12) and an experimental group ( 48). Rats in the experimental group were given intramuscular injections of hydrocortisone to establish a KYDS model. The 48 rats successfully modeled were then randomly divided into a model group (model, 12), a carbenoxolone intraperitoneal injection group (CBX, 12), a moxibustion group (moxi, 12), and a moxi + CBX group ( 12). In the moxi, the Shenshu (BL23) and Guanyuan (CV 4) acupoints were treated with moxibustion for 14 d. After treatment, measures were taken of serum levels of corticosterone (CORT), adrenocorticotropic hormone (ACTH), and corticotropin-releasing hormone (CRH). The expression of mineralocorticoid receptors (MRs), glucocorticoid receptors (GRs), 11beta-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), CRH, and ACTH in the rats' amygdala, hypothalamus, or pituitary (as appropriate) was detected. Data were analyzed using one-way analysis of variance. RESULTS: Compared with those of the control group, the serum levels of CRH, ACTH, and CORT; the mRNA and protein expressions of MR, GR, and 11ß-HSD1 in the amygdala; the mRNA and protein expressions of 11ß-HSD1 in the hypothalamus; the CRH mRNA expression in the amygdala and hypothalamus; and the ACTH mRNA expression in the pituitary of the rats in the model group were all significantly decreased (0.05 or 0.01). After treatment with moxibustion, all the aforementioned observation indices except for 11ß-HSD1 mRNA expression were ameliorated compared with those in the model group (0.05 or 0.01). CONCLUSIONS: Suspended moxibustion can effectively improve the serum levels of ACTH, CRH, and CORT and can up-regulate the mRNA and protein expressions of MR, GR, 11ß-HSD1, CRH, and ACTH in the amygdala and hypothalamus of KYDS rats. This may be one of the molecular mechanisms with which moxibustion alleviates KYDS.
Assuntos
Hidrocortisona , Moxibustão , Ratos , Masculino , Animais , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Ratos Sprague-Dawley , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/farmacologia , Sistema Hipófise-Suprarrenal/metabolismo , Hormônio Liberador da Corticotropina/genética , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Corticosterona/metabolismo , Tonsila do Cerebelo/metabolismo , RNA Mensageiro/metabolismo , Rim/metabolismoRESUMO
BACKGROUND: Vascular MR (mineralocorticoid receptor) expression increases with age driving aging-associated vascular stiffness and hypertension. MR has two isoforms (1α and 1ß) with distinct 5'-untranslated and promoter sequences (P1 and P2), but the gene regulatory mechanisms remain unknown. We investigated mechanisms driving MR gene transcriptional regulation in aging human smooth muscle cells (SMC). METHODS: MR was quantified in aortic tissue and primary human aortic SMC (HASMC) comparing adult and aged donors and adult HASMC treated with H2O2, to induce aging. Predicted transcription factor (TF) binding sites in the MR gene were validated using chromatin immunoprecipitations and reporter assays. The impact of TF inhibitors on MR isoforms and fibrosis target gene expression was examined. RESULTS: Expression of both MR mRNA isoforms increased with donor age or H2O2 treatment in HASMCs. HIF1α (hypoxia-inducible factor) and the inflammatory TF NFκB (nuclear factor kappa B) both increased with age in HASMCs and are predicted to bind MR promoters. H2O2 induced HIF1α and NFκB expression and DNA binding of HIF1α to the MR P1 promoter and of NFκB to both MR promoters in HASMCs. HIF1α inhibition decreased MR-1α isoform expression while NFκB inhibition decreased both MR isoforms. HIF1α, NFκB, and MR inhibition decreased the expression of a SMC-MR target gene implicated in vascular fibrosis. In human aortic tissues, expression of HIF1α and NFκB each positively correlated with donor age and MR expression (P<0.0001). CONCLUSIONS: These data implicate the inflammatory TF, NFκB, and oxidative stress-induced TF, HIF1α, in regulating SMC MR transcription in aging HASMCs, which drives aging-related vascular stiffness and cardiovascular disease.
Assuntos
Peróxido de Hidrogênio , Receptores de Mineralocorticoides , Humanos , Idoso , Receptores de Mineralocorticoides/genética , Peróxido de Hidrogênio/farmacologia , Músculo Liso Vascular , Estresse Oxidativo/genética , Miócitos de Músculo Liso , Fibrose , Expressão GênicaRESUMO
BACKGROUND: Despite clinical evidence indicating poor muscle health in subjects with primary aldosteronism (PA), it is still unclear whether the role of aldosterone in muscle metabolism is direct or mediated indirectly via factors, such as electrolyte imbalance or impaired glucose uptake. As one approach to clarify this issue, we investigated the effect of aldosterone on in vitro myogenesis and the potential mechanism explaining it. METHODS: Myogenesis was induced in mouse C2C12 myoblasts with 2% horse serum. Immunofluorescence, quantitative reversetranscription polymerase chain reaction, Western blot, viability, and migration analyses were performed for experimental research. RESULTS: Recombinant aldosterone treatment suppressed muscle differentiation from mouse C2C12 myoblasts in a dose-dependent manner, and consistently reduced the expression of myogenic differentiation markers. Furthermore, aldosterone significantly increased intracellular reactive oxygen species (ROS) levels in myotubes, and treatment with N-acetyl cysteine, a potent biological thiol antioxidant, reversed the decrease of myotube area, myotube area per myotube, nucleus number per myotube, and fusion index due to aldosterone through decreasing oxidative stress. A binding enzyme-linked immunosorbent assay confirmed that mineralocorticoid receptor (MR) interacted with aldosterone in C2C12 myoblasts, while eplerenone, an MR inhibitor, blocked aldosterone-stimulated intracellular ROS generation during myogenesis and markedly attenuated the suppression of in vitro myogenesis by aldosterone. CONCLUSION: These findings support the hypothesis that hypersecretion of aldosterone, like PA, directly contributes to muscular deterioration and suggest that antioxidants and/or MR antagonists could be effective therapeutic options to reduce the risk of sarcopenia in these patients.
Assuntos
Aldosterona , Receptores de Mineralocorticoides , Aldosterona/metabolismo , Aldosterona/farmacologia , Animais , Humanos , Camundongos , Desenvolvimento Muscular/fisiologia , Mioblastos/metabolismo , Estresse Oxidativo/fisiologia , Receptores de Mineralocorticoides/metabolismoRESUMO
Myocardial infarction (MI) is a major cause of death worldwide. Here, we identify the macrophage MR (mineralocorticoid receptor) as a crucial pathogenic player in cardiac wound repair after MI. Seven days after left coronary artery ligation, mice with myeloid cell-restricted MR deficiency compared with WT (wild type) controls displayed improved cardiac function and remodeling associated with enhanced infarct neovascularization and scar maturation. Gene expression profiling of heart-resident and infarct macrophages revealed that MR deletion drives macrophage differentiation in the ischemic microenvironment toward a phenotype outside the M1/M2 paradigm, with regulation of multiple interrelated factors controlling wound healing and tissue repair. Mechanistic and functional data suggest that inactivation of the macrophage MR promotes myocardial infarct healing through enhanced efferocytosis of neutrophils, the suppression of free radical formation, and the modulation of fibroblast activation state. Crucially, targeted delivery of MR antagonists to macrophages, with a single administration of RU28318 or eplerenone-containing liposomes at the onset of MI, improved the healing response and protected against cardiac remodeling and functional deterioration, offering an effective and unique therapeutic strategy for cardiac repair.
Assuntos
Eplerenona/farmacologia , Coração/fisiopatologia , Infarto do Miocárdio , Miocárdio , Receptores de Mineralocorticoides , Cicatrização , Animais , Diferenciação Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Lipossomos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Receptores de Mineralocorticoides/deficiência , Receptores de Mineralocorticoides/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Remodelação Ventricular/fisiologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologiaRESUMO
Compelling clinical evidence indicates that obesity and its associated metabolic abnormalities supersede the protective effects of female sex-hormones and predisposes premenopausal women to cardiovascular disease. The underlying mechanisms remain poorly defined; however, recent studies have implicated overactivation of the aldosterone-MR (mineralocorticoid receptor) axis as a cause of sex-specific cardiovascular risk in obese females. Experimental evidence indicates that the MR on endothelial cells contributes to obesity-associated, leptin-induced endothelial dysfunction in female experimental models, however, the vascular-specific mechanisms via which females are predisposed to heightened endothelial MR activation remain unknown. Therefore, we hypothesized that endogenous expression of endothelial MR is higher in females than males, which predisposes them to obesity-associated, leptin-mediated endothelial dysfunction. We found that endothelial MR expression is higher in blood vessels from female mice and humans compared with those of males, and further, that PrR (progesterone receptor) activation in endothelial cells is the driving mechanism for sex-dependent increases in endothelial MR expression in females. In addition, we show that genetic deletion of either the endothelial MR or PrR in female mice prevents leptin-induced endothelial dysfunction, providing direct evidence that interaction between the PrR and MR mediates obesity-associated endothelial impairment in females. Collectively, these novel findings suggest that progesterone drives sex-differences in endothelial MR expression and predisposes female mice to leptin-induced endothelial dysfunction, which indicates that MR antagonists may be a promising sex-specific therapy to reduce the risk of cardiovascular diseases in obese premenopausal women.
Assuntos
Endotélio Vascular/patologia , Regulação da Expressão Gênica , Obesidade/fisiopatologia , Progesterona/metabolismo , Receptores de Mineralocorticoides/genética , Animais , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Feminino , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Obesidade/genética , Distribuição Aleatória , Medição de Risco , Sensibilidade e Especificidade , Fatores Sexuais , Regulação para CimaRESUMO
CKD is common and frequently complicated with hypertension both predialysis and in ESKD. As a major modifiable risk factor for cardiovascular disease in this high-risk population, treatment of hypertension in CKD is important. We review the mechanisms and indications for the major classes of antihypertensive drugs, including angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, ß-adrenergic blocking agents, dihydropyridine calcium channel blockers, thiazide diuretics, loop diuretics, mineralocorticoid receptor blockers, direct vasodilators, and centrally acting α-agonists. Recent evidence suggests that ß-adrenergic blocking agents may have a greater role in patients on dialysis and that thiazide diuretics may have a greater role in patients with advanced CKD. We conclude with sharing our general prescribing algorithm for both patients with predialysis CKD and patients with ESKD on dialysis.
Assuntos
Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Humanos , Inibidores de Simportadores de Cloreto de Sódio/uso terapêutico , Vasodilatadores/uso terapêuticoRESUMO
The relationship between biological sex and aldosterone on blood pressure (BP) is unclear. We hypothesized that sex would modify the interaction between aldosterone and vascular responses to salt intake and angiotensin II (AngII). To test this hypothesis, in 1592 subjects from the well-controlled Hypertensive Pathotype cohort, we compared responses of women and men to chronic (BP and aldosterone levels in response to dietary salt) and acute (BP, renal plasma flow, and aldosterone responses to AngII infusion) manipulations. Women had a 30% higher salt sensitivity of BP than men (P<0.0005) regardless of age or hypertension status, a greater BP response to AngII, and a 15% greater aldosterone response to AngII on both restricted and liberal salt diets (P<0.005). Furthermore, there was an interaction (P=0.003) between sex and aldosterone on BP response to AngII. Women also had a greater (P<0.01) increment in renal plasma flow in response to AngII than men. To assess potential mechanisms for this sex effect, we compared aldosterone responses to AngII or potassium from rat zona glomerulosa cells and observed greater aldosterone production in female than male zona glomerulosa cells basally and in response to both agonists (P<0.0001). In a rodent model of aldosterone-mediated cardiovascular disease induced by increased AngII and low NO, circulating aldosterone levels (P<0.01), myocardial damage (P<0.001), and proteinuria (P<0.05) were greater in female than male rats despite having similar BP responses. Thus, increased aldosterone production likely contributes to sex differences in cardiovascular disease, suggesting that women may be more responsive to mineralocorticoid receptor blockade than men.
Assuntos
Angiotensina II/farmacologia , Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Zona Glomerulosa/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Wistar , Fatores SexuaisRESUMO
Stiffening of the vasculature with aging is a strong predictor of adverse cardiovascular events, independent of all other risk factors including blood pressure, yet no therapies target this process. MRs (mineralocorticoid receptors) in smooth muscle cells (SMCs) have been implicated in the regulation of vascular fibrosis but have not been explored in vascular aging. Comparing SMC-MR-deleted male mice to MR-intact littermates at 3, 12, and 18 months of age, we demonstrated that aging-associated vascular stiffening and fibrosis are mitigated by MR deletion in SMCs. Progression of cardiac stiffness and fibrosis and the decline in exercise capacity with aging were also mitigated by MR deletion in SMC. Vascular gene expression profiling analysis revealed that MR deletion in SMC is associated with recruitment of a distinct antifibrotic vascular gene expression program with aging. Moreover, long-term pharmacological inhibition of MR in aged mice prevented the progression of vascular fibrosis and stiffness and induced a similar antifibrotic vascular gene program. Finally, in a small trial in elderly male humans, short-term MR antagonism produced an antifibrotic signature of circulating biomarkers similar to that observed in the vasculature of SMC-MR-deleted mice. These findings suggest that SMC-MR contributes to vascular stiffening with aging and is a potential therapeutic target to prevent the progression of aging-associated vascular fibrosis and stiffness.