Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Physiol Genomics ; 50(1): 52-66, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29127223

RESUMO

Brown adipose tissue (BAT) has been suggested to play an important role in lipid and glucose metabolism in rodents and possibly also in humans. In the current study, we used genetic and correlation analyses in the BXH/HXB recombinant inbred (RI) strains, derived from Brown Norway (BN) and spontaneously hypertensive rats (SHR), to identify genetic determinants of BAT function. Linkage analyses revealed a quantitative trait locus (QTL) associated with interscapular BAT mass on chromosome 4 and two closely linked QTLs associated with glucose oxidation and glucose incorporation into BAT lipids on chromosome 2. Using weighted gene coexpression network analysis (WGCNA) we identified 1,147 gene coexpression modules in the BAT from BXH/HXB rats and mapped their module eigengene QTLs. Through an unsupervised analysis, we identified modules related to BAT relative mass and function. The Coral4.1 coexpression module is associated with BAT relative mass (includes Cd36 highly connected gene), and the Darkseagreen coexpression module is associated with glucose incorporation into BAT lipids (includes Hiat1, Fmo5, and Sort1 highly connected transcripts). Because multiple statistical criteria were used to identify candidate modules, significance thresholds for individual tests were not adjusted for multiple comparisons across modules. In summary, a systems genetic analysis using genomic and quantitative transcriptomic and physiological information has produced confirmation of several known genetic factors and significant insight into novel genetic components functioning in BAT and possibly contributing to traits characteristic of the metabolic syndrome.


Assuntos
Tecido Adiposo Marrom/metabolismo , Animais , Predisposição Genética para Doença/genética , Glucose/metabolismo , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Locos de Características Quantitativas/genética , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos SHR
2.
Genes Brain Behav ; 22(3): e12845, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37114320

RESUMO

The gut-brain axis is increasingly recognized as an important pathway involved in cocaine use disorder. Microbial products of the murine gut have been shown to affect striatal gene expression, and depletion of the microbiome by antibiotic treatment alters cocaine-induced behavioral sensitization in C57BL/6J male mice. Some reports suggest that cocaine-induced behavioral sensitization is correlated with drug self-administration behavior in mice. Here, we profile the composition of the naïve microbiome and its response to cocaine sensitization in two collaborative cross (CC) strains. These strains display extremely divergent behavioral responses to cocaine sensitization. A high-responding strain, CC004/TauUncJ (CC04), has a gut microbiome that contains a greater amount of Lactobacillus than the cocaine-nonresponsive strain CC041/TauUncJ (CC41). The gut microbiome of CC41 is characterized by an abundance of Eisenbergella, Robinsonella and Ruminococcus. In response to cocaine, CC04 has an increased Barnsiella population, while the gut microbiome of CC41 displays no significant changes. PICRUSt functional analysis of the functional potential of the gut microbiome in CC04 shows a significant number of potential gut-brain modules altered after exposure to cocaine, specifically those encoding for tryptophan synthesis, glutamine metabolism, and menaquinone synthesis (vitamin K2). Depletion of the microbiome by antibiotic treatment revealed an altered cocaine-sensitization response following antibiotics in female CC04 mice. Depleting the microbiome by antibiotic treatment in males revealed increased infusions for CC04 during a cocaine intravenous self-administration dose-response curve. Together these data suggest that genetic differences in cocaine-related behaviors may involve the microbiome.


Assuntos
Cocaína , Microbiota , Camundongos , Masculino , Feminino , Animais , Cocaína/farmacologia , Camundongos de Cruzamento Colaborativo , Camundongos Endogâmicos C57BL , Antibacterianos/farmacologia
3.
Genes Brain Behav ; 20(8): e12773, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34672075

RESUMO

Drugs of abuse, including alcohol and stimulants like cocaine, produce effects that are subject to individual variability, and genetic variation accounts for at least a portion of those differences. Notably, research in both animal models and human subjects point toward reward sensitivity and impulsivity as being trait characteristics that predict relatively greater positive subjective responses to stimulant drugs. Here we describe use of the eight collaborative cross (CC) founder strains and 38 (reversal learning) or 10 (all other tests) CC strains to examine the heritability of reward sensitivity and impulsivity traits, as well as genetic correlations between these measures and existing addiction-related phenotypes. Strains were all tested for activity in an open field and reward sensitivity (intake of chocolate BOOST®). Mice were then divided into two counterbalanced groups and underwent reversal learning (impulsive action and waiting impulsivity) or delay discounting (impulsive choice). CC and founder mice show significant heritability for impulsive action, impulsive choice, waiting impulsivity, locomotor activity, and reward sensitivity, with each impulsive phenotype determined to be non-correlating, independent traits. This research was conducted within the broader, inter-laboratory effort of the Center for Systems Neurogenetics of Addiction (CSNA) to characterize CC and DO mice for multiple, cocaine abuse related traits. These data will facilitate the discovery of genetic correlations between predictive traits, which will then guide discovery of genes and genetic variants that contribute to addictive behaviors.


Assuntos
Variação Genética , Comportamento Impulsivo , Locomoção/genética , Recompensa , Transtornos Relacionados ao Uso de Substâncias/genética , Animais , Feminino , Endogamia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
4.
Cell Syst ; 12(3): 235-247.e9, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33472028

RESUMO

The challenge of precision medicine is to model complex interactions among DNA variants, phenotypes, development, environments, and treatments. We address this challenge by expanding the BXD family of mice to 140 fully isogenic strains, creating a uniquely powerful model for precision medicine. This family segregates for 6 million common DNA variants-a level that exceeds many human populations. Because each member can be replicated, heritable traits can be mapped with high power and precision. Current BXD phenomes are unsurpassed in coverage and include much omics data and thousands of quantitative traits. BXDs can be extended by a single-generation cross to as many as 19,460 isogenic F1 progeny, and this extended BXD family is an effective platform for testing causal modeling and for predictive validation. BXDs are a unique core resource for the field of experimental precision medicine.


Assuntos
Medicina de Precisão , Animais , Modelos Animais de Doenças , Camundongos
5.
Brain Sci ; 10(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131477

RESUMO

Between 25% and 30% of the nearly one million military personnel who participated in the 1991 Persian Gulf War became ill with chronic symptoms ranging from gastrointestinal to nervous system dysfunction. This disorder is now referred to as Gulf War Illness (GWI) and the underlying pathophysiology has been linked to exposure-based neuroinflammation caused by organophosphorous (OP) compounds coupled with high circulating glucocorticoids. In a mouse model of GWI we developed, corticosterone was shown to act synergistically with an OP (diisopropylflurophosphate) to dramatically increase proinflammatory cytokine gene expression in the brain. Because not all Gulf War participants became sick, the question arises as to whether differential genetic constitution might underlie individual differences in susceptibility. To address this question of genetic liability, we tested the impact of OP and glucocorticoid exposure in a genetic reference population of 30 inbred mouse strains. We also studied both sexes. The results showed wide differences among strains and overall that females were less sensitive to the combined treatment than males. Furthermore, we identified one OP-glucocorticoid locus and nominated a candidate gene-Spon1-that may underlie the marked differences in response.

6.
Front Genet ; 11: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174956

RESUMO

In this study, we identify genomic regions that modulate the number of necrotic axons in optic nerves of a family of mice, some of which have severe glaucoma, and define a set of high priority positional candidate genes that modulate retinal ganglion cell (RGC) axonal degeneration. A large cohort of the BXD family were aged to greater than 13 months of age. Optic nerves from 74 strains and the DBA/2J (D2) parent were harvested, sectioned, and stained with p-phenylenediamine. Numbers of necrotic axons per optic nerve cross-section were counted from 1 to 10 replicates per genotype. Strain means and standard errors were uploaded into GeneNetwork 2 for mapping and systems genetics analyses (Trait 18614). The number of necrotic axons per nerve ranged from only a few hundred to more than 4,000. Using conventional interval mapping as well as linear mixed model mapping, we identified a single locus on chromosome 12 between 109 and 112.5 Mb with a likelihood ratio statistic (LRS) of ~18.5 (p genome-wide ~0.1). Axon necrosis is not linked to locations of major known glaucoma genes in this family, including Gpnmb, Tyrp1, Cdh11, Pou6f2, and Cacna2d1. This indicates that although these genes contribute to pigmentary dispersion or elevated IOP, none directly modulates axon necrosis. Of 156 positional candidates, eight genes-CDC42 binding protein kinase beta (Cdc42bpb); eukaryotic translation initiation factor 5 (Eif5); BCL2-associated athanogene 5 (Bag5); apoptogenic 1, mitochondrial (Apopt1); kinesin light chain 1 (Klc1); X-ray repair cross complementing 3 (Xrcc3); protein phosphatase 1, regulatory subunit 13B (Ppp1r13b); and transmembrane protein 179 (Tmem179)-passed stringent criteria and are high priority candidates. Several candidates are linked to mitochondria and/or axons, strengthening their plausible role as modulators of ON necrosis. Additional studies are required to validate and/or eliminate plausible candidates. Surprisingly, IOP and ON necrosis are inversely correlated across the BXD family in mice >13 months of age and these two traits share few genes among their top ocular and retinal correlates. These data suggest that the two traits are independently modulated or that a more complex and multifaceted approach is required to reveal their association.

7.
Genes Brain Behav ; 17(7): e12469, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29457871

RESUMO

Aggression between male conspecifics is a complex social behavior that is likely modulated by multiple gene variants. In this study, the BXD recombinant inbred mouse strains (RIS) were used to map quantitative trait loci (QTLs) underlying behaviors associated with intermale aggression. Four hundred and fifty-seven males from 55 strains (including the parentals) were observed at an age of 13 ± 1 week in a resident-intruder test following 10 days of isolation. Attack latency was measured directly within a 10-minute time period and the test was repeated 24 hours later. The variables we analyzed were the proportion of attacking males in a given strain as well as the attack latency (on days 1 and 2, and both days combined). On day 1, 29% of males attacked, and this increased to 37% on day 2. Large strain differences were obtained for all measures of aggression, indicating substantial heritability (intraclass correlations 0.10-0.18). We identified a significant QTL on chromosome (Chr) 1 and suggestive QTLs on mouse Chrs 1 and 12 for both attack and latency variables. The significant Chr 1 locus maps to a gene-sparse region between 82 and 88.5 Mb with the C57BL/6J allele increasing aggression and explaining about 18% of the variance. The most likely candidate gene modulating this trait is Htr2b which encodes the serotonin 2B receptor and has been implicated in aggressive and impulsive behavior in mice, humans and other species.


Assuntos
Agressão/fisiologia , Cromossomos de Mamíferos , Locos de Características Quantitativas , Receptor 5-HT2B de Serotonina/genética , Alelos , Animais , Comportamento Animal/fisiologia , Mapeamento Cromossômico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Comportamento Social
8.
Curr Protoc Neurosci ; 79: 8.39.1-8.39.20, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28398643

RESUMO

Genome-wide association studies (GWAS) have emerged as a powerful tool to identify alleles and molecular pathways that influence susceptibility to psychiatric disorders and other diseases. Forward genetics using mouse mapping populations allows for a complementary approach that provides rigorous genetic and environmental control. In this unit, we describe techniques and tools that reduce the technical burden traditionally associated with genetic mapping in mice and enhance their translational utility to human psychiatric disorders. We provide guidance on choosing the appropriate mapping population, discuss the importance of phenotype, and offer detailed instructions on using the Web-based resource GeneNetwork to aid neuroscientists in better understanding the mechanisms through which genes influence behavior. We believe that the continued development of mouse mapping populations, genetic tools, bioinformatics resources, and statistical methodologies should remain a parallel strategy by which to investigate the genetic and environmental underpinnings of psychiatric disorders and other diseases in humans. © 2017 by John Wiley & Sons, Inc.


Assuntos
Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla/métodos , Alelos , Animais , Bases de Dados Genéticas , Genótipo , Humanos , Fenótipo
9.
Methods Mol Biol ; 1488: 481-497, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27933540

RESUMO

Obesity is a complex trait, determined by many genes and influenced by environmental factors. Mapping genomic loci contributing to obesity helps to identify gene variants responsible for differences in the phenotype. However, measuring fat content alone is often not sufficient to identify the underlying gene or genes. Besides in-depth phenotyping, well-designed genetic populations and the combined analysis of data of different origins are necessary to detect one of several genetic determinants. Structured mouse populations and linking information from different experiments help to simplify the complexity in the search for direct genetic effects or factors that are hidden in the genome. In this chapter we present an example of how the physicochemical characterization of adipose tissue in BXD recombinant inbred lines contributes to enlighten the obese phenotype of mice. We describe the search for gene(s) contributing to collagen content in adipose tissue of BXD strains using the GeneNetwork platform.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Obesidade/genética , Tecido Adiposo/metabolismo , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Cruzamentos Genéticos , Modelos Animais de Doenças , Estudos de Associação Genética/métodos , Ligação Genética , Camundongos , Camundongos Endogâmicos , Obesidade/metabolismo , Fenótipo , Locos de Características Quantitativas , Software
10.
G3 (Bethesda) ; 7(10): 3427-3434, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28839117

RESUMO

Genetic reference panels are widely used to map complex, quantitative traits in model organisms. We have generated new high-resolution genetic maps of 259 mouse inbred strains from recombinant inbred strain panels (C57BL/6J × DBA/2J, ILS/IbgTejJ × ISS/IbgTejJ, and C57BL/6J × A/J) and chromosome substitution strain panels (C57BL/6J-Chr#, C57BL/6J-Chr#, and C57BL/6J-Chr#). We genotyped all samples using the Affymetrix Mouse Diversity Array with an average intermarker spacing of 4.3 kb. The new genetic maps provide increased precision in the localization of recombination breakpoints compared to the previous maps. Although the strains were presumed to be fully inbred, we found residual heterozygosity in 40% of individual mice from five of the six panels. We also identified de novo deletions and duplications, in homozygous or heterozygous state, ranging in size from 21 kb to 8.4 Mb. Almost two-thirds (46 out of 76) of these deletions overlap exons of protein coding genes and may have phenotypic consequences. Twenty-nine putative gene conversions were identified in the chromosome substitution strains. We find that gene conversions are more likely to occur in regions where the homologous chromosomes are more similar. The raw genotyping data and genetic maps of these strain panels are available at http://churchill-lab.jax.org/website/MDA.


Assuntos
Camundongos Endogâmicos/genética , Animais , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Feminino , Genótipo , Masculino
11.
Alcohol ; 58: 107-125, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27884493

RESUMO

Neuroactive steroids modulate alcohol's impact on brain function and behavior. Ethanol exposure alters neuroactive steroid levels in rats, humans, and some mouse strains. We conducted an exploratory analysis of the neuroactive steroids (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP), (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC), and pregnenolone across 126-158 individuals and 19 fully inbred strains belonging to the BXD family, which were subjected to air exposure, or chronic intermittent ethanol (CIE) exposure. Neuroactive steroids were measured by gas chromatography-mass spectrometry in serum following five cycles of CIE or air exposure (CTL). Pregnenolone levels in CTLs range from 272 to 578 pg/mL (strain variation of 2.1 fold with p = 0.049 for strain main effect), with heritability of 0.20 ± 0.006 (SEM), whereas in CIE cases values range from 304 to 919 pg/mL (3.0-fold variation, p = 0.007), with heritability of 0.23 ± 0.005. 3α,5α-THP levels in CTLs range from 375 to 1055 pg/mL (2.8-fold variation, p = 0.0007), with heritability of 0.28 ± 0.01; in CIE cases they range from 460 to 1022 pg/mL (2.2-fold variation, p = 0.004), with heritability of 0.23 ± 0.005. 3α,5α-THDOC levels in CTLs range from 94 to 448 pg/mL (4.8-fold variation, p = 0.002), with heritability of 0.30 ± 0.01, whereas levels in CIE cases do not differ significantly. However, global averages across all BXD strains do not differ between CTL and CIE for any of the steroids. 3α,5α-THDOC levels were lower in females than males in both groups (CTL -53%, CIE -55%, p < 0.001). Suggestive quantitative trait loci are identified for pregnenolone and 3α,5α-THP levels. Genetic variation in 3α,5α-THP was not correlated with two-bottle choice ethanol consumption in CTL or CIE-exposed animals. However, individual variation in 3α,5α-THP correlated negatively with ethanol consumption in both groups. Moreover, strain variation in neuroactive steroid levels correlated with numerous behavioral phenotypes of anxiety sensitivity accessed in GeneNetwork, consistent with evidence that neuroactive steroids modulate anxiety-like behavior.


Assuntos
Etanol/administração & dosagem , Exposição por Inalação , Pregnenolona/sangue , Pregnenolona/genética , 17-alfa-Hidroxipregnenolona/sangue , Animais , Biomarcadores/sangue , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/fisiologia , Variação Genética/efeitos dos fármacos , Variação Genética/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neurotransmissores/sangue , Neurotransmissores/genética , Especificidade da Espécie , Esteroides/sangue
12.
Methods Mol Biol ; 1488: 153-188, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27933524

RESUMO

In this chapter we address the recent explosion in large multilevel population studies such as the METSIM study in humans as well as large panels of animal models such as the Hybrid Mouse Diversity Panel or the BXD set of recombinant inbred strains. These studies have harnessed the increasing affordability of large-scale high-throughput profiling to gather massive quantities of data. These datasets, spread across different -omics levels (genome, transcriptome, etc.), different tissues (e.g. heart, plasma, bone) and different environmental factors (e.g. diet, drugs) each individually have led to a number of novel findings relevant to a variety of complex diseases and other phenotypes. The analysis of these results, however, is often limited to individuals with a comprehensive understanding of database languages such as SQL. In this chapter, we describe the development of a GUI-based database analysis suite, using the Hybrid Mouse Diversity Panel as an example to lay out a series of methods for visualization and integration of large systems genetics datasets. The database is based on the Shiny suite of tools in R, and is transferrable to other SQL-based datasets.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genética Populacional/métodos , Software , Animais , Cruzamento , Cruzamentos Genéticos , Ligação Genética , Humanos , Hibridização Genética , Desequilíbrio de Ligação , Camundongos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Interface Usuário-Computador , Navegador
13.
Front Genet ; 7: 52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092175

RESUMO

Impulsivity is associated with a spectrum of psychiatric disorders including drug addiction. To investigate genetic associations with impulsivity and initiation of drug taking, we took a two-step approach. First, we identified genes whose expression level in prefrontal cortex, striatum and accumbens were associated with impulsive behavior in the 5-choice serial reaction time task across 10 BXD recombinant inbred (BXD RI) mouse strains and their progenitor C57BL/6J and DBA2/J strains. Behavioral data were correlated with regional gene expression using GeneNetwork (www.genenetwork.org), to identify 44 genes whose probability of association with impulsivity exceeded a false discovery rate of < 0.05. We then interrogated the IMAGEN database of 1423 adolescents for potential associations of SNPs in human homologs of those genes identified in the mouse study, with brain activation during impulsive performance in the Monetary Incentive Delay task, and with novelty seeking scores from the Temperament and Character Inventory, as well as alcohol experience. There was a significant overall association between the human homologs of impulsivity-related genes and percentage of premature responses in the MID task and with fMRI BOLD-response in ventral striatum (VS) during reward anticipation. In contrast, no significant association was found between the polygenic scores and anterior cingulate cortex activation. Univariate association analyses revealed that the G allele (major) of the intronic SNP rs6438839 in the KALRN gene was significantly associated with increased VS activation. Additionally, the A-allele (minor) of KALRN intronic SNP rs4634050, belonging to the same haplotype block, was associated with increased frequency of binge drinking.

14.
Front Cardiovasc Med ; 1: 11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26664861

RESUMO

We have previously reported Lvm1 as a quantitative trait locus (QTL) on chromosome 13 that links to cardiac left ventricular mass (LVM) in a panel of AxB/BxA mouse recombinant inbred strains (RIS). When performing a gene expression QTL (eQTL) analysis, we detected 33 cis-eQTLs that correlated with LVM. Among the latter, a group of eight cis-eQTLs clustered in a genomic region smaller than 6 Mb and surrounding the Lvm1 peak on chr13. Co-variant analysis indicated that all eight genes correlated with the phenotype in a causal rather than a reactive fashion, a finding that (despite its functional interest) did not provide grounds to prioritize any of these candidate genes. As a complementary approach, we performed weighted gene co-expression network analysis, which allowed us to detect 49 modules of highly connected genes. The module that correlated best with LVM: (1) showed linkage to a module QTL whose boundaries matched closely those of the phenotypic Lvm1 QTL on chr13; (2) harbored a disproportionately high proportion of genes originating from a small genomic region on chromosome 13 (including the 8 previously detected cis-eQTL genes); (3) contained genes that, beyond their individual level of expression, correlated with LVM as a function of their inter-connectivity; and (4) showed increased abundance of polymorphic insertion-deletion elements in the same region. Taken together, these data suggest that a domain on chromosome 13 constitutes the biologic principle responsible for the organization and linkage of the gene co-expression module, and indicate a mechanism whereby genetic variants within chromosome domains may associate to phenotypic changes via coordinate changes in the expression of several genes. One other possible implication of these findings is that candidate genes to consider as contributors to a particular phenotype should extend further than those that are closest to the QTL peak.

15.
Front Genet ; 4: 291, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24421784

RESUMO

In biology, networks are used in different contexts as ways to represent relationships between entities, such as for instance interactions between genes, proteins or metabolites. Despite progress in the analysis of such networks and their potential to better understand the collective impact of genes on complex traits, one remaining challenge is to establish the biologic validity of gene co-expression networks and to determine what governs their organization. We used WGCNA to construct and analyze seven gene expression datasets from several tissues of mouse recombinant inbred strains (RIS). For six out of the 7 networks, we found that linkage to "module QTLs" (mQTLs) could be established for 29.3% of gene co-expression modules detected in the several mouse RIS. For about 74.6% of such genetically-linked modules, the mQTL was on the same chromosome as the one contributing most genes to the module, with genes originating from that chromosome showing higher connectivity than other genes in the modules. Such modules (that we considered as "genetically-driven") had network statistic properties (density and centralization) that set them apart from other modules in the network. Altogether, a sizeable portion of gene co-expression modules detected in mouse RIS panels had genetic determinants as their main organizing principle. In addition to providing a biologic interpretation validation for these modules, these genetic determinants imparted on them particular properties that set them apart from other modules in the network, to the point that they can be predicted to a large extent on the basis of their network statistics.

16.
Front Neuroanat ; 7: 6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23641202

RESUMO

The close interaction between mother and offspring in mammals is thought to contribute to the evolution of genomic imprinting or parent-of-origin dependent gene expression. Empirical tests of theories about the evolution of imprinting have been scant for several reasons. Models make different assumptions about the traits affected by imprinted genes and the scenarios in which imprinting is predicted to have been selected for. Thus, competing hypotheses cannot readily be tested against each other. Further, it is far from clear how predictions about expression patterns of genes with specific phenotypic effects can be tested given current methodology of assaying gene expression levels, be it in the brain or in other tissues. We first set out a scenario for testing competing hypotheses and delineate the different assumptions and predictions of models. We then outline how predictions may be tested using mouse models such as intercrosses or recombinant inbred (RI) systems that can be phenotyped for traits relevant to imprinting theories. Further, we briefly discuss different molecular approaches that may be used in conjunction with experiments to ascertain expression patterns of imprinted genes and thus the testing of predictions.

17.
Ann Vasc Dis ; 6(1): 16-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23641278

RESUMO

A genome analysis of mouse models may shed some light on the complex clinicopathological manifestations of systemic vasculitis. In the study of susceptibility loci to vasculitis in MRL mouse models, we found that systemic vasculitis developed through the cumulative effect of multiple gene loci, each of which by itself did not have a significant effect in inducing the related phenotype, thus indicating a polygenic system. The mice developed vasculitis in an additive manner with a hierarchical effect. Some of the susceptibility loci seemed to be common to those in other collagen diseases. Moreover, the loci controlling tissue specificity of vasculitis were present. One of the positional candidate genes for vasculitis showed an allelic polymorphism in the coding region, thus possibly causing a qualitative difference in its function. As a result, a particular combination of polygenes with such an allelic polymorphism may thus play a critical role in leading the cascade reaction to develop vasculitis, and also a regular variation of systemic vasculitis. This is designated as the polygene network in systemic vasculitis. (J Jpn Coll Angiol, 2009, 49: 11-16).

18.
Neuroscience ; 252: 13-23, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23911809

RESUMO

A clear link exists between iron deficiency (ID) and nigrostriatal dopamine malfunction. This link appears to play an important role in at least restless legs syndrome (RLS) if not several other neurological diseases. Yet, the underlying mechanisms remain unclear. The effects of ID on gene expression in the brain have not been studied extensively. Here, to better understand how exactly ID alters dopamine functioning, we investigated the effects of ID on gene expression in the brain, seeking to identify any potential transcription-based mechanisms. We used six strains of recombinant inbred mice (BXD type) known to differ in susceptibility to ID in the brain. Upon weaning, we subjected mice from each strain to either an iron-deficient or iron-adequate diet. After 100 days of dietary treatment, we measured the effects of ID on gene expression in the ventral midbrain, a region containing the substantia nigra. The substantia nigra is the base of the nigrostriatal dopamine pathway and a region particularly affected by iron loss in RLS. We screened for ID-induced changes in expression, including changes in that of both iron-regulating and dopamine-related genes. Results revealed a number of expression changes occurring in ID, with large strain-dependent differences in the genes involved and number of expression changes occurring. In terms of dopamine-related genes, results revealed ID-induced expression changes in three genes with direct ties to nigrostriatal dopamine functioning, two of which have never before been implicated in an iron-dopamine pathway. These were stromal cell-derived factor 1 (Cxcl12, or SDF-1), a ferritin regulator and potent dopamine neuromodulator, and hemoglobin, beta adult chain 1 (Hbb-b1), a gene recently shown to play a functional role in dopaminergic neurons. The extent of up-regulation of these genes varied by strain. This work not only demonstrates a wide genetic variation in the transcriptional response to ID in the brain, but also reveals two novel biochemical pathways by which iron may potentially alter dopamine function.


Assuntos
Quimiocina CXCL12/genética , Dopamina/genética , Hemoglobinas/genética , Deficiências de Ferro , Mesencéfalo/metabolismo , Animais , Quimiocina CXCL12/metabolismo , Dopamina/metabolismo , Hemoglobinas/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Síndrome das Pernas Inquietas/genética , Síndrome das Pernas Inquietas/metabolismo , Transcriptoma
19.
Genes Brain Behav ; 11(8): 911-20, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22989164

RESUMO

The DBA/2J inbred strain of mice has been used extensively in hearing research as it suffers from early-onset, progressive hearing loss. Initially, it mostly affects high frequencies, but already at 2-3 months hearing loss becomes broad. In search for hearing loss genes other than Cadherin 23 (otocadherin) and fascin-2, which make a large contribution to the high-frequency deficits, we used a large set of the genetic reference population of BXD recombinant inbred strains. For frequencies 4, 8, 16 and 32 kHz, auditory brainstem response hearing thresholds were longitudinally determined from 2-3 up to 12 weeks of age. Apart from a significant, broad quantitative trait locus (QTL) for high-frequency hearing loss on chromosome 11 containing the fascin-2 gene, we found a novel, small QTL for low-frequency hearing loss on chromosome 18, from hereon called ahl9. Real-time quantitative polymerase chain reaction of organs of Corti, isolated from a subset of strains, showed that a limited number of genes at the QTL were expressed in the organ of Corti. Of those genes, several showed significant expression differences based on the parental line contributing to the allele. Our results may aid in the future identification of genes involved in low-frequency, early-onset hearing loss.


Assuntos
Perda Auditiva/genética , Camundongos Endogâmicos/genética , Locos de Características Quantitativas/genética , Fatores Etários , Animais , Limiar Auditivo , Cromossomos de Mamíferos , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Regulação da Expressão Gênica/genética , Estudos de Associação Genética , Masculino , Camundongos , Especificidade da Espécie
20.
Curr Protoc Mouse Biol ; 1(1): 213-38, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26068994

RESUMO

In this article we describe the main characteristics and peculiarities of the different strains and stocks of laboratory animals from the genetic point of view. We explain how they are produced and maintained as well as their advantages and disadvantages in the context of animal experiments. We also provide some guidance to make the best possible choice when establishing an experimental protocol. Curr. Protoc. Mouse Biol. 1:213-238. © 2011 by John Wiley & Sons, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA