Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Biomol NMR ; 78(1): 19-30, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38102490

RESUMO

A recently developed homonuclear dipolar recoupling scheme, Adiabatic Linearly FREquency Swept reCOupling (AL FRESCO), was applied to record two-dimensional (2D) 15N-15N correlations on uniformly 15N-labeled GB1 powders. A major feature exploited in these 15N-15N correlations was AL FRESCO's remarkably low RF power demands, which enabled seconds-long mixing schemes when establishing direct correlations. These 15N-15N mixing schemes proved efficient regardless of the magic-angle spinning (MAS) rate and, being nearly free from dipolar truncation effects, they enabled the detection of long-range, weak dipolar couplings, even in the presence of strong short-range dipolar couplings. This led to a connectivity information that was significantly better than that obtained with spontaneously proton-driven, 15N spin-diffusion experiments. An indirect approach producing long-range 15N-15N correlations was also tested, relying on short (ms-long) 1HN-1HN mixings schemes while applying AL FRESCO chirped pulses along the 15N channel. These indirect mixing schemes produced numerous long-distance Ni-Ni±n (n = 2 - 5) correlations, that might be useful for characterizing three-dimensional arrangements in proteins. Once again, these AL FRESCO mediated experiments proved more informative than variants based on spin-diffusion-based 1HN-1HN counterparts.


Assuntos
Peptídeos , Proteínas , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Imageamento por Ressonância Magnética , Prótons
2.
Chemphyschem ; 24(16): e202300206, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37306393

RESUMO

Methods which induce site-specificity and sensitivity enhancement in solid-state magic-angle spinning NMR spectroscopy become more important for structural biology due to the increasing size of molecules under investigation. Recently, several strategies have been developed to increase site specificity and thus reduce signal overlap. Under dynamic nuclear polarization (DNP) for NMR signal enhancement, it is possible to use cross-relaxation transfer induced by select dynamic groups within the molecules which is exploited by SCREAM-DNP (Specific Cross Relaxation Enhancement by Active Motions under DNP). Here, we present an approach where we additionally reintroduce the homonuclear dipolar coupling with rotational resonance (R2 ) during SCREAM-DNP to further boost the selectivity of the experiment. Detailed analysis of the polarization buildup dynamics of 13 C-methyl polarization source and 13 C-carbonyl target in 2-13 C-ethyl 1-13 C-acetate provides information about the sought-after and spurious transfer pathways. We show that dipolar-recoupled transfer rates greatly exceed the DNP buildup dynamics in our model system, indicating that significantly larger distances can be selectively and efficiently hyperpolarized.

3.
Chemphyschem ; 24(16): e202300141, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37309720

RESUMO

Additional phase modulation (APM) is proposed to generally enhance the theoretical efficiency of homonuclear double-quantum (DQ) recoupling in solid-state NMR. APM applies an additional phase list to DQ recoupling in steps of an entire block. The sine-based phase list can enhance the theoretical efficiency by 15-30 %, from 0.52 to 0.68 (non-γ-encoded recoupling) or from 0.73 to 0.84 (γ-encoded recoupling), with doubled recoupling time. The genetic-algorithm (GA) optimized APM can adiabatically enhance the efficiency to ∼1.0 at longer times. The concept of APM has been tested on SPR-51 , BaBa, and SPR-31 , which represent γ-encoded recoupling, non-γ-encoded recoupling, and another kind beyond the former two, respectively. Simulations reveal that enhancements from APM are due to the activation of more crystallites in the powder. Experiments on 2,3-13 C labeled alanine are used to validate the APM recoupling. This new concept shall shed light on developing more efficient homonuclear recoupling methods.

4.
Solid State Nucl Magn Reson ; 124: 101858, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36796278

RESUMO

Recoupling, decoupling, and multidimensional correlation experiments in magic-angle-spinning (MAS) solid-state NMR can be designed by exploiting the symmetry of internal spin interactions. One such scheme, namely, C521, and its supercycled version SPC521, notated as a five-fold symmetry sequence, is widely used for double-quantum dipole-dipole recoupling. Such schemes are generally rotor synchronised by design. We demonstrate an asynchronous implementation of the SPC521 sequence leading to higher double-quantum homonuclear polarisation transfer efficiency compared to the normal synchronous implementation. Rotor-synchronisation is broken in two different ways: lengthening the duration of one of the pulses, denoted as pulse-width variation (PWV), and mismatching the MAS frequency denoted as MAS variation (MASV). The application of this asynchronous sequence is shown on three different samples, namely, U-13C-alanine and 1,4-13C-labelled ammonium phthalate which include 13Cα-13Cß, 13Cα-13Co, and 13Co-13Co spin systems, and adenosine 5'- triphosphate disodium salt trihydrate (ATP⋅3H2O). We show that the asynchronous version performs better for spin pairs with small dipole-dipole couplings and large chemical-shift anisotropies, for example, 13Co-13Co. Simulations and experiments are shown to corroborate the results.

5.
Solid State Nucl Magn Reson ; 122: 101834, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36327552

RESUMO

Interaction frames play an important role in describing and understanding experimental schemes in magnetic resonance. They are often used to eliminate dominating parts of the spin Hamiltonian, e.g., the Zeeman Hamiltonian in the usual (Zeeman) rotating frame, or the radio-frequency-field (rf) Hamiltonian to describe the efficiency of decoupling or recoupling sequences. Going into an interaction frame can also make parts of a time-dependent Hamiltonian time independent like the rf-field Hamiltonian in the usual (Zeeman) rotating frame. Eliminating the dominant term often allows a better understanding of the details of the spin dynamics. Going into an interaction frame can also reduces the energy-level splitting in the Hamiltonian leading to a faster convergence of perturbation expansions, average Hamiltonian, or Floquet theory. Often, there is no obvious choice of the interaction frame to use but some can be more convenient than others. Using the example of frequency-selective dipolar recoupling, we discuss the differences, advantages, and disadvantages of different choices of interaction frames. They always include the complete radio-frequency Hamiltonian but can also contain the chemical shifts of the spins and may or may not contain the effective fields over one cycle of the pulse sequence.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Simulação por Computador , Espectroscopia de Ressonância Magnética , Fases de Leitura
6.
Solid State Nucl Magn Reson ; 120: 101807, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35709566

RESUMO

Due to their high gyromagnetic ratio, there is considerable interest in measuring distances and correlations involving protons, but such measurements are compounded by the simultaneous recoupling of chemical shift anisotropy (CSA). This secondary recoupling adds additional modulations to the signal intensities that ultimately lead to t1-noise and signal decay. Recently, Venkatesh et al. demonstrated that the addition of CSA refocusing periods during 1H-X dipolar recoupling led to sequences with far higher stability and performance. Herein, we describe a related effort and develop a symmetry-based recoupling sequence that continually refocuses the 1H CSA. This sequence shows superior performance to the regular and t1-noise eliminated D-HMQC sequences in the case of spin-1/2 nuclei and comparable performance to the later for half-integer quadrupoles.


Assuntos
Prótons , Anisotropia
7.
J Biomol NMR ; 75(4-5): 193-202, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33890210

RESUMO

Spectral editing is crucial to simplify the crowded solid-state NMR spectra of proteins. New techniques are introduced to edit 13C-13C correlations of uniformly labeled proteins under moderate magic-angle spinning (MAS), based on our recent frequency-selective homonuclear recoupling sequences [Zhang et al., J. Phys. Chem. Lett. 2020, 11, 8077-8083]. The signals of alanine, serine, or threonine residues are selected out by selective 13Cα-13Cß double-quantum filtering (DQF). The 13Cα-13Cß correlations of alanine residues are selectively established with efficiency up to ~ 1.8 times that by dipolar-assisted rotational resonance (DARR). The techniques are shown in 2D/3D NCCX experiments and applied to the uniformly 13C, 15N labeled Aquaporin Z (AqpZ) membrane protein, demonstrating their potential to simplify spectral analyses in biological solid-state NMR.


Assuntos
Alanina/análise , Aquaporinas/química , Proteínas de Escherichia coli/química , Ressonância Magnética Nuclear Biomolecular/métodos , Serina/análise , Treonina/análise , Proteolipídeos/química
8.
Solid State Nucl Magn Reson ; 111: 101712, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450713

RESUMO

γ-encoded recoupling sequences are known to produce strong amplitude modulations that lead to sharp doublets when Fourier transformed. These doublets depend very little on the recoupled tensor asymmetry and thus enable for the straightforward determination of dynamic order parameters. It can, however, be difficult to measure small anisotropies, or small order parameters, using such sequences; the resonances from the doublet may overlap with each other, or with the zero-frequency glitch. This limitation has prevented the widespread use of 1H chemical shift anisotropy (CSA) for the measurement of dynamics, particularly for CH protons which typically have CSAs of only a few ppm when immobile. Here, we introduce a simple modification to the traditional 1H CSA and proton-detected local field pulse sequences that enables the acquisition of a hypercomplex dataset and the removal of the uncorrelated magnetization that results in the zero-frequency glitch. These new sequences then yield a frequency shift in the indirect dimension, rather than a splitting, which is easily identifiable even in cases of weak interactions.


Assuntos
Prótons , Anisotropia
9.
Solid State Nucl Magn Reson ; 114: 101743, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34153880

RESUMO

Orientationally-dependent interactions such as dipolar coupling, quadrupolar coupling, and chemical shift anisotropy (CSA) contain a wealth of spatial information that can be used to elucidate molecular conformations and dynamics. To determine the sign of the chemical shift tensor anisotropy parameter (δaniso), both the |m| â€‹= â€‹1 and |m| â€‹= â€‹2 components of the CSA need to be symmetry allowed, while the recoupling of the |m| â€‹= â€‹1 term is accompanied with the reintroduction of homonuclear dipolar coupling components. Therefore, previously suggested sequences which solely recouple the |m| â€‹= â€‹2 term cannot determine the sign a 1H's δaniso in a densely-coupled network. In this study, we demonstrate the CSA recoupling of strongly dipolar coupled 1H spins using the Cnn1(9003601805400360180900) sequence. This pulse scheme recouples both the |m| â€‹= â€‹1 and |m| â€‹= â€‹2 CSA terms but the scaling factors for the homonuclear dipolar coupling terms are zeroed. Consequently, the sequence is sensitive to the sign of δaniso but is not influenced by homonuclear dipolar interactions.


Assuntos
Prótons , Anisotropia
10.
Solid State Nucl Magn Reson ; 112: 101711, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33508579

RESUMO

With the recent advances in NMR hardware and probe design technology, magic-angle spinning (MAS) rates over 100 â€‹kHz are accessible now, even on commercial solid NMR probes. Under such fast MAS conditions, excellent spectral resolution has been achieved by efficient suppression of anisotropic interactions, which also opens an avenue to the proton-detected NMR experiments in solids. Numerous methods have been developed to take full advantage of fast MAS during the last decades. Among them, dipolar recoupling techniques under fast MAS play vital roles in the determination of the molecular structure and dynamics, and are also key elements in multi-dimensional correlation NMR experiments. Herein, we review the dipolar recoupling techniques, especially those developed in the past two decades for fast-to-ultrafast MAS conditions. A major focus for our discussion is the ratio of RF field strength (in frequency) to MAS frequency, ν1/νr, in different pulse sequences, which determines whether these dipolar recoupling techniques are suitable for NMR experiments under fast MAS conditions. Systematic comparisons are made among both heteronuclear and homonuclear dipolar recoupling schemes. In addition, the schemes developed specially for proton-detection NMR experiments under ultrafast MAS conditions are highlighted as well.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Anisotropia , Espectroscopia de Ressonância Magnética/métodos
11.
Magn Reson Chem ; 59(9-10): 1062-1076, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33847409

RESUMO

Through-space heteronuclear correlation (D-HETCOR) experiments based on heteronuclear multiple-quantum correlation (D-HMQC) and refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) sequences have been proven to be useful approaches for the detection of the spatial proximity between half-integer quadrupolar nuclei in solids under magic-angle spinning (MAS) conditions. The corresponding pulse sequences employ coherence transfers mediated by heteronuclear dipolar interactions, which are reintroduced under MAS by radiofrequency irradiation of only one of the two correlated nuclei. We investigate herein using numerical simulations of spin dynamics and solid-state NMR experiments on magnesium aluminoborate glass how the choice of the channel to which the heteronuclear dipolar recoupling is applied affects the transfer efficiency of D-HMQC and D-RINEPT sequences between 11 B and 27 Al nuclei. Experimental results show that maximum transfer efficiency is achieved when the recoupling scheme is applied to the channel, for which the spin magnetization is parallel to the B0 axis in average.

12.
Magn Reson Chem ; 59(9-10): 991-1008, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33624858

RESUMO

Detecting proximities between nuclei is crucial for atomic-scale structure determination with nuclear magnetic resonance (NMR) spectroscopy. Different from spin-1/2 nuclei, the methodology for quadrupolar nuclei is limited for solids due to the complex spin dynamics under simultaneous magic-angle spinning (MAS) and radio-frequency irradiation. Herein, the performances of several homonuclear rotary recoupling (HORROR)-based homonuclear dipolar recoupling sequences are evaluated for 27 Al (spin-5/2). It is shown numerically and experimentally on mesoporous alumina that BR 2 2 1 outperforms the supercycled S3 sequence and its pure double-quantum (DQ) (bracketed) version, [S3 ], both in terms of DQ transfer efficiency and bandwidth. This result is surprising since the S3 sequence is among the best low-power recoupling schemes for spin-1/2. The superiority of BR 2 2 1 is thoroughly explained, and the crucial role of radio-frequency offsets during its spin dynamics is highlighted. The analytical approximation of BR 2 2 1 , derived in an offset-toggling frame, clarifies the interplay between offset and DQ efficiency, namely, the benefits of off-resonance irradiation and the trough in DQ efficiency for BR 2 2 1 when the irradiation is central between two resonances, both for spin-1/2 and half-integer-spin quadrupolar nuclei. Additionally, density matrix propagations show that the BR 2 2 1 sequence, applied to quadrupolar nuclei subject to quadrupolar interaction much larger than radio-frequency frequency field, can create single- and multiple-quantum coherences for near on-resonance irradiation. This significantly perturbs the creation of DQ coherences between central transitions of neighboring quadrupolar nuclei. This effect explains the DQ efficiency trough for near on-resonance irradiation, in the case of both cross-correlation and autocorrelation peaks. Overall, this work aids experimental acquisition of homonuclear dipolar correlation spectra of half-integer-spin quadrupolar nuclei and provides theoretical insights towards improving recoupling schemes at high magnetic field and fast MAS.

13.
Chemphyschem ; 21(13): 1436-1443, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32363727

RESUMO

Chemical shift tensors obtained from solid-state NMR spectroscopy are very sensitive reporters of structure and dynamics in proteins. While accurate 13 C and 15 N chemical shift tensors are accessible by magic angle spinning (MAS) NMR, their quantum mechanical calculations remain challenging, particularly for 15 N atoms. Here we compare experimentally determined backbone 13 Cα and 15 NH chemical shift tensors by MAS NMR with hybrid quantum mechanics/molecular mechanics/molecular dynamics (MD-QM/MM) calculations for the carbohydrate-binding domain of galectin-3. Excellent agreement between experimental and computed 15 NH chemical shift anisotropy values was obtained using the Amber ff15ipq force field when solvent dynamics was taken into account in the calculation. Our results establish important benchmark conditions for improving the accuracy of chemical shift calculations in proteins and may aid in the validation of protein structure models derived by MAS NMR.


Assuntos
Proteínas Sanguíneas/química , Galectinas/química , Isótopos de Carbono/química , Teoria da Densidade Funcional , Humanos , Modelos Químicos , Simulação de Dinâmica Molecular , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular
14.
Proc Natl Acad Sci U S A ; 114(18): E3592-E3601, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416656

RESUMO

The lipid-protein film covering the interface of the lung alveolar in mammals is vital for proper lung function and its deficiency is related to a range of diseases. Here we present a molecular-level characterization of a clinical-grade porcine lung surfactant extract using a multitechnique approach consisting of [Formula: see text]-[Formula: see text] solid-state nuclear magnetic spectroscopy, small- and wide-angle X-ray scattering, and mass spectrometry. The detailed characterization presented for reconstituted membranes of a lung extract demonstrates that the molecular structure of lung surfactant strongly depends on the concentration of cholesterol. If cholesterol makes up about 11% of the total dry weight of lung surfactant, the surfactant extract adopts a single liquid-ordered lamellar phase, [Formula: see text], at physiological temperatures. This [Formula: see text] phase gradually changes into a liquid-disordered lamellar phase, [Formula: see text], when the temperature is increased by a few degrees. In the absence of cholesterol the system segregates into one lamellar gel phase and one [Formula: see text] phase. Remarkably, it was possible to measure a large set of order parameter magnitudes [Formula: see text] from the liquid-disordered and -ordered lamellar phases and assign them to specific C-H bonds of the phospholipids in the biological extract with no use of isotopic labeling. These findings with molecular details on lung surfactant mixtures together with the presented NMR methodology may guide further development of pulmonary surfactant pharmaceuticals that better mimic the physiological self-assembly compositions for treatment of pathological states such as respiratory distress syndrome.


Assuntos
Colesterol/química , Misturas Complexas/química , Pulmão/química , Surfactantes Pulmonares/química , Animais , Domínios Proteicos , Suínos , Difração de Raios X
15.
Molecules ; 25(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947638

RESUMO

We demonstrate that supercycles of previously introduced two-fold symmetry dipolar recoupling schemes may be utilized successfully in homonuclear correlation nuclear magnetic resonance (NMR) spectroscopy for probing proximities among half-integer spin quadrupolar nuclei in network materials undergoing magic-angle-spinning (MAS). These (SR2 2 1 ) M , (SR2 4 1 ) M , and (SR2 8 1 )M recoupling sequences with M = 3 and M = 4 offer comparably efficient magnetization transfers in single-quantum-single-quantum (1Q-1Q) correlation NMR experiments under moderately fast MAS conditions, as demonstrated at 14.1 T and 24 kHz MAS in the contexts of 11 B NMR on a Na 2 O-CaO-B 2 O 3 -SiO 2 glass and 27 Al NMR on the open framework aluminophosphate AlPO-CJ19 [(NH 4 ) 2 Al 4 (PO 4 ) 4 HPO 4 · H 2 O]. Numerically simulated magnetization transfers in spin-3/2 pairs revealed a progressively enhanced tolerance to resonance offsets and rf-amplitude errors of the recoupling pulses along the series (SR2 2 1 ) M < (SR2 4 1 ) M < (SR2 8 1 )M for increasing differences in chemical shifts between the two nuclei. Nonetheless, for scenarios of a relatively minor chemical-shift dispersions ( ≲ 3 kHz), the (SR2 2 1 )M supercycles perform best both experimentally and in simulations.


Assuntos
Algoritmos , Compostos de Alumínio/química , Simulação por Computador , Vidro/química , Espectroscopia de Ressonância Magnética/métodos , Imãs , Modelos Teóricos , Teoria Quântica
16.
Solid State Nucl Magn Reson ; 98: 12-18, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30669006

RESUMO

The sensitivity of solid-state NMR experiments that utilize 1H zero-quantum heteronuclear dipolar recoupling, such as D-HMQC, is compromised by poor homonuclear decoupling. This leads to a rapid decay of recoupled magnetization and an inefficient recoupling of long-range dipolar interactions, especially for nuclides with low gyromagnetic ratios. We investigated the use, in symmetry-based 1H heteronuclear recoupling sequences, of a basic R element that was principally designed for efficient homonuclear decoupling. By shortening the time required to suppress the effects of homonuclear dipolar interactions to the duration of a single inversion pulse, spin diffusion was effectively quenched and long-lived recoupled coherence lifetimes could be obtained. We show, both theoretically and experimentally, that these modified sequences can yield considerable sensitivity improvements over the current state-of-the-art methods and applied them to the indirect detection of 89Y in a metal-organic framework.

17.
Solid State Nucl Magn Reson ; 101: 76-81, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31129364

RESUMO

We describe a useful method for measuring the internuclear distances within arbitrarily selected pairs of like nuclei in dipolar-coupled multi-spin systems. The method uses a combination of the zero-quantum shift-evolution-assisted selective homonuclear recoupling (ZQ-SEASHORE) technique developed by Hu and Tycko [J. Chem. Phys. 2009, 131, 045101] and double-frequency-selective radio-frequency pulse. The double-frequency-selective pulse inverts polarizations of two spins simultaneously, and thus applications of the method presented here are only limited by the spectral resolution, and not by the number of interacting spins. Our experiments demonstrate the validity of the method and present analytical expressions for the dephasing curve.

18.
J Biomol NMR ; 71(1): 31-43, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29785460

RESUMO

The ability to simultaneously measure many long-range distances is critical to efficient and accurate determination of protein structures by solid-state NMR (SSNMR). So far, the most common distance constraints for proteins are 13C-15N distances, which are usually measured using the rotational-echo double-resonance (REDOR) technique. However, these measurements are restricted to distances of up to ~ 5 Å due to the low gyromagnetic ratios of 15N and 13C. Here we present a robust 2D 13C-19F REDOR experiment to measure multiple distances to ~ 10 Å. The technique targets proteins that contain a small number of recombinantly or synthetically incorporated fluorines. The 13C-19F REDOR sequence is combined with 2D 13C-13C correlation to resolve multiple distances in highly 13C-labeled proteins. We show that, at the high magnetic fields which are important for obtaining well resolved 13C spectra, the deleterious effect of the large 19F chemical shift anisotropy for REDOR is ameliorated by fast magic-angle spinning and is further taken into account in numerical simulations. We demonstrate this 2D 13C-13C resolved 13C-19F REDOR technique on 13C, 15N-labeled GB1. A 5-19F-Trp tagged GB1 sample shows the extraction of distances to a single fluorine atom, while a 3-19F-Tyr labeled GB1 sample allows us to evaluate the effects of multi-spin coupling and statistical 19F labeling on distance measurement. Finally, we apply this 2D REDOR experiment to membrane-bound influenza B M2 transmembrane peptide, and show that the distance between the proton-selective histidine residue and the gating tryptophan residue differs from the distances in the solution NMR structure of detergent-bound BM2. This 2D 13C-19F REDOR technique should facilitate SSNMR-based protein structure determination by increasing the measurable distances to the ~ 10 Å range.


Assuntos
Isótopos de Carbono , Flúor , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Proteínas de Membrana/química , Proteínas Virais/química
19.
Solid State Nucl Magn Reson ; 94: 7-19, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103084

RESUMO

We introduce a novel heteronuclear dipolar recoupling based on the R21-1 symmetry, which uses the tanh/tan (tt) shaped pulse as a basic inversion element and is denoted R21-1(tt). Using first-order average Hamiltonian theory, we show that this sequence is non-γ-encoded and that it reintroduces the |m| = 1 spatial component of the Chemical Shift Anisotropy (CSA) of the irradiated isotope and its heteronuclear dipolar interactions. Using numerical simulations and one-dimensional (1D) 27Al-{31P} through-space D-HMQC (Dipolar Heteronuclear Multiple-Quantum Correlation) experiments on VPI-5, we compare the performances of this recoupling to those of other non-γ-encoded |m| = 1 heteronuclear recoupling schemes: REDOR (Rotational-Echo DOuble Resonance), SFAM (Simultaneous Frequency and Amplitude Modulation) and R42-1(tt). Such comparison indicates that the R21-1(tt) scheme is more robust to CSA, offset and radiofrequency field inhomogeneities than the other schemes. We take advantage of the high robustness of R21-1(tt) to CSA and offset to demonstrate the possibility to correlate the signals of 207Pb isotope with those of neighboring half-integer spin quadrupolar nuclei. Such approach is demonstrated experimentally by acquiring 11B-{207Pb} D-HMQC 2D spectra of Pb4O(BO3)2 crystalline powder.

20.
Angew Chem Int Ed Engl ; 57(44): 14514-14518, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29989288

RESUMO

Dipolar recoupling in solid-state NMR is an essential method for establishing correlations between nuclei that are close in space. In applications on protein samples, the traditional experiments like ramped and adiabatic DCP suffer from the fact that dipolar recoupling occurs only within a limited volume of the sample. This selection is dictated by the radiofrequency (rf) field inhomogeneity profile of the excitation solenoidal coil. We employ optimal control strategies to design dipolar recoupling sequences with substantially larger responsive volume and increased sensitivity. We show that it is essential to compensate for additional temporal modulations induced by sample rotation in a spatially inhomogeneous rf field. Such modulations interfere with the pulse sequence and decrease its performance. Using large-scale optimizations we developed pulse schemes for magnetization transfer from amide nitrogen to carbonyl (NCO) as well as aliphatic carbons (NCA). Our experiments yield a signal intensity increased by a factor of 1.5 and 2.0 for NCA and NCO transfers, respectively, compared to conventional ramped DCP sequences. Consistent results were obtained using several biological samples and NMR instruments.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA