Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 182: 109180, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39341106

RESUMO

Carotid artery plaque is a key factor in stroke and other cardiovascular diseases. Accurate detection and localization of carotid artery plaque are essential for early prevention and treatment of diseases. However, current carotid artery ultrasound image anomaly detection algorithms face several challenges, such as scarcity of anomaly data in carotid arteries and traditional convolutional neural networks (CNNs) overlooking long-distance dependencies in image processing. To address these issues, we propose an anomaly detection algorithm for carotid artery plaques based on ultrasound images. The algorithm innovatively introduces an anomaly sample pair generation method to increase dataset diversity. Moreover, it employs an improved adaptive recursive gating pyramid pooling module to extract image features. This module significantly enhances the model's capacity for high-order spatial interactions and adaptive feature fusion, thereby greatly improving the neural network's feature extraction ability. The algorithm uses a Sigmoid layer to map each pixel's feature vector to a probability distribution between 0 and 1, and anomalies are detected through probability threshold binarization. Experimental results show that our algorithm's AUROC index reached 90.7% on a carotid artery dataset, improving by 2.1% compared to the FPI method. This research is expected to provide robust support for the early prevention and treatment of cardiovascular diseases.

2.
Health Inf Sci Syst ; 11(1): 51, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37954065

RESUMO

The fractal features of liver fibrosis MR images exhibit an irregular fragmented distribution, and the diffuse feature distribution lacks interconnectivity, result- ing in incomplete feature learning and poor recognition accuracy. In this paper, we insert recursive gated convolution into the ResNet18 network to introduce spatial information interactions during the feature learning process and extend it to higher orders using recursion. Higher-order spatial information interactions enhance the correlation between features and enable the neural network to focus more on the pixel-level dependencies, enabling a global interpretation of liver MR images. Additionally, the existence of light scattering and quantum noise during the imaging process, coupled with environmental factors such as breathing artifacts caused by long time breath holding, affects the quality of the MR images. To improve the classification performance of the neural network and better cap- ture sample features, we introduce the Adaptive Rebalance loss function and incorporate the feature paradigm as a learnable adaptive attribute into the angular margin auxiliary function. Adaptive Rebalance loss function can expand the inter-class distance and narrow the intra-class difference to further enhance discriminative ability of the model. We conduct extensive experiments on liver fibrosis MR imaging involving 209 patients. The results demonstrate an average improvement of two percent in recognition accuracy compared to ResNet18. The github is at https://github.com/XZN1233/paper.git.

3.
Front Plant Sci ; 14: 1276833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023942

RESUMO

Efficient and accurate detection and providing early warning for citrus psyllids is crucial as they are the primary vector of citrus huanglongbing. In this study, we created a dataset comprising images of citrus psyllids in natural environments and proposed a lightweight detection model based on the spatial channel interaction. First, the YOLO-SCL model was based on the YOLOv5s architecture, which uses an efficient channel attention module to perform local channel attention on the inputs in the recursive gated convolutional modules to achieve a combination of global spatial and local channel interactions, improving the model's ability to express the features of the critical regions of small targets. Second, the lightweight design of the 21st layer C3 module in the neck network of the YOLO-SCL model and the small target feature information were retained to the maximum extent by deleting the two convolutional layers, whereas the number of parameters was reduced to improve the detection accuracy of the model. Third, with the detection accuracy of the YOLO-SCL model as the objective function, the black widow optimization algorithm was used to optimize the hyperparameters of the YOLO-SCL model, and the iterative mechanism of swarm intelligence was used to further improve the model performance. The experimental results showed that the YOLO-SCL model achieved a mAP@0.5 of 97.07% for citrus psyllids, which was 1.18% higher than that achieved using conventional YOLOv5s model. Meanwhile, the number of parameters and computation amount of the YOLO-SCL model are 6.92 M and 15.5 GFlops, respectively, which are 14.25% and 2.52% lower than those of the conventional YOLOv5s model. In addition, after using the black widow optimization algorithm to optimize the hyperparameters, the mAP@0.5 of the YOLO-SCL model for citrus psyllid improved to 97.18%, making it more suitable for the natural environments in which citrus psyllids are to be detected. The experimental results showed that the YOLO-SCL model has good detection accuracy for citrus psyllids, and the model was ported to the Jetson AGX Xavier edge computing platform, with an average processing time of 38.8 ms for a single-frame image and a power consumption of 16.85 W. This study provides a new technological solution for the safety of citrus production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA