Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2404622, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058229

RESUMO

Inspired by natural photosynthesis, the visible-light-driven Z-scheme system is very effective and promising for boosting photocatalytic hydrogen production and pollutant degradation. Here, a synergistic Z-scheme photocatalyst is constructed by coupling ReS2 nanosheet and ZnIn2S4 nanoflower and the experimental evidence for this direct Z-scheme heterostructure is provided by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance. Consequently, such a unique nanostructure makes this Z-scheme heterostructure exhibit 23.7 times higher photocatalytic hydrogen production than that of ZnIn2S4 nanoflower. Moreover, the ZnIn2S4/ReS2 photocatalyst is also very stable for photocatalytic hydrogen evolution, almost without activity decay even storing for two weeks. Besides, this Z-scheme heterostructure also exhibits superior photocatalytic degradation rates of methylene blue (1.7 × 10-2 min-1) and mitoxantrone (4.2 × 10-3 min-1) than that of ZnIn2S4 photocatalyst. The ultraviolet-visible absorption spectra, transient photocurrent spectra, open-circuit potential measurement, and electrochemical impedance spectroscopy reveal that the superior photocatalytic performance of ZnIn2S4/ReS2 heterostructure is mostly attributed to its broad and strong visible-light absorption, effective separation of charge carrier, and improved redox ability. This work provides a promising nanostructure design of a visible-light-driven Z-scheme heterostructure to simultaneously promote photocatalytic reduction and oxidation activity.

2.
J Environ Manage ; 362: 121334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824890

RESUMO

A series of V-xCe/Ti catalysts was prepared by a step impregnation method with gradual increased Ce amount. Compared to the commercial V-W/Ti catalysts, the V-xCe/Ti catalysts exhibited considerably higher COx selectivity during the oxidation of naphthalene (Nap), and less intermediates or by-products were detected both in gas phase and on the surface of the catalysts. Through a series of characterizations, it was found that abundance of weak basic sites in the form of OH was introduced by Ce, as well as the oxygen vacancies caused by the redox cycle of V4++Ce4+↔V5++Ce3+. The weak basic sites introduced by Ce could greatly enhance the Nap adsorption, and the Nap adsorbed was quickly converted to naphthol on Ce-OH. Furthermore, V existed at a high valence with the interaction of V and Ce, and the oxygen vacancies also increased the Oads and OOH. It improved the redox ability and the regeneration of Ce-OH on V-xCe/Ti catalysts. The intermediates could be further oxidized, and the Ce-OH consumed in the reaction could recover quickly. Therefore, almost 100% Nap conversion and a high COx selectivity was observed in the V-xCe/Ti catalysts system.


Assuntos
Naftalenos , Oxirredução , Naftalenos/química , Catálise , Adsorção
3.
J Environ Sci (China) ; 138: 326-338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135400

RESUMO

Developing industrially moldable catalysts with harmonized redox performance and acidity is of great significance for the efficient disposal of chlorinated volatile organic compounds (CVOCs) in actual exhaust gasses. Here, commercial TiO2, typically used for molding catalysts, was chosen as the carrier to fabricate a series of Ce0.02Mn0-0.24TiOx materials with different Mn doping ratios and employed for chlorobenzene (CB) destruction. The introduction of Mn remarkedly facilitated the synergistic effect of each element via the electron transfer processes: Ce3++Mn4+/3+↔Ce4++Mn3+/2+ and Mn4+/3++Ti4+↔Mn3+/2++Ti3+. These synergistic interactions in Ce0.02Mn0.04-0.24TiOx, especially Ce0.02Mn0.16TiOx, significantly elevated the active oxygen species, oxygen vacancies and redox properties, endowing the superior catalytic oxidation of CB. When the Mn doping amount increased to 0.24, a separate Mn3O4 phase appeared, which in turn might weaken the synergistic effect. Furthermore, the acidity of Ce0.02Mn0.04-0.24TiOx was decreased with the Mn doping, regulating the balance of redox property and acidity. Notably, Ce0.02Mn0.16TiOx featured relatively abundant B-acid sites. Its coordinating redox ability and moderate acidity promoted the deep oxidation of CB and RCOOH- intermediates, as well as the rapid desorption of Cl species, thus obtaining sustainable reactivity. In comparison, CeTiOx owned the strongest acidity, however, its poor redox property was not sufficient for the timely oxidative decomposition of the easier adsorbed CB, resulting in its rapid deactivation. This finding provides a promising strategy for the construction of efficient commercial molding catalysts to decompose the industrial-scale CVOCs.


Assuntos
Óxidos , Compostos Orgânicos Voláteis , Titânio , Manganês , Oxirredução , Catálise
4.
Chemistry ; 28(12): e202104447, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-34964187

RESUMO

A new silyl-substituted trioxotriangulene (TOT) neutral radical and corresponding porous organosiloxanes (POSs) were synthesized. The neutral radical exhibited a peculiarly high stability and formed a diamagnetic π-dimer characteristic to TOT neutral radicals stabilized by the strong multiple SOMO-SOMO interaction in both solution and solid states. POSs including TOT units within the organosiloxane-wall were prepared by polycondensation of the silyl groups and formed microporous structures with ∼1 nm-size diameters. Redox ability of TOT units in the POS was demonstrated by the treatment of oxidant/reductant in heterogeneous suspension condition, where the TOT units were reversibly converted between reduced and neutral radical species. Furthermore, the solid-state electrochemical measurements of the POS revealed the reversible multi-stage redox ability of TOT units involving polyanionic species within the organosiloxane-wall.

5.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806222

RESUMO

Methylmercury (MeHg) is a widely known environmental pollutant that causes severe neurotoxicity. MeHg-induced neurotoxicity depends on various cellular conditions, including differences in the characteristics of tissues and cells, exposure age (fetal, childhood, or adulthood), and exposure levels. Research has highlighted the importance of oxidative stress in the pathogenesis of MeHg-induced toxicity and the site- and cell-specific nature of MeHg-induced neurotoxicity. The cerebellar granule cells and deeper layer cerebrocortical neurons are vulnerable to MeHg. In contrast, the hippocampal neurons are resistant to MeHg, even at high mercury accumulation levels. This review summarizes the mechanisms underlying MeHg-mediated intracellular events that lead to site-specific neurotoxicity. Specifically, we discuss the mechanisms associated with the redox ability, neural outgrowth and synapse formation, cellular signaling pathways, epigenetics, and the inflammatory conditions of microglia.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Síndromes Neurotóxicas , Adulto , Criança , Humanos , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Neurônios/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo
6.
Int J Mol Sci ; 21(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630686

RESUMO

A three-fold symmetric trioxotriangulene derivative with three pyridyl groups as coordinating sites was designed and synthesized. In a cyclic voltammetry measurement, the trioxotriangulene skeleton exhibited a multi-stage redox ability from neutral radical to radical tetra-anion species. In the zinc complex of monoanion species, three pyridyl groups coordinated to the zinc ion to build up a two-dimensional coordination network with a cavity larger than 12 Å in diameter. This complex was utilized as a cathode active material of a lithium ion battery, and it exhibited a capacity of ca. 60 mAh g-1 per the weight of the active material with a stable cycling performance up to 1000 cycles. This work shows that the coordination network formed by the trioxotriangulene-based ligand was effective in the improvement of cycle performance of the organic rechargeable battery.


Assuntos
Diterpenos/química , Diterpenos/síntese química , Diterpenos/metabolismo , Fontes de Energia Elétrica/microbiologia , Eletrodos , Fontes Geradoras de Energia , Lítio , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Oxirredução
7.
Adv Mater ; 36(8): e2310600, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988721

RESUMO

Semiconductor photocatalytic technology holds immense promise for converting sustainable solar energy into chemically storable energy, with significant applications in the realms of energy and the environment. However, the inherent issue of rapid recombination of photogenerated electrons and holes hinders the performance of single photocatalysts. To overcome this challenge, the construction of 2D S-scheme heterojunction photocatalysts emerges as an effective strategy. The deliberate design of dimensionality ensures a substantial interfacial area; while, the S-scheme charge transfer mechanism facilitates efficient charge separation and maximizes redox capabilities. This review commences with a fresh perspective on the charge transfer mechanism in S-scheme heterojunctions, followed by a comprehensive exploration of preparation methods and characterization techniques. Subsequently, the recent advancements in 2D S-scheme heterojunction photocatalysts are summarized. Notably, the mechanism behind activity enhancement is elucidated. Finally, the prospects for the development of 2D S-scheme photocatalysts are presented.

8.
Microorganisms ; 12(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38792770

RESUMO

In cyanobacteria and chloroplasts (in algae and plants), ATP synthase plays a pivotal role as a photosynthetic membrane complex responsible for producing ATP from adenosine diphosphate and inorganic phosphate, utilizing a proton motive force gradient induced by photosynthesis. These two ATP synthases exhibit similarities in gene organization, amino acid sequences of subunits, structure, and functional mechanisms, suggesting that cyanobacterial ATP synthase is probably the evolutionary precursor to chloroplast ATP synthase. In this review, we explore the precise synthesis and assembly of ATP synthase subunits to address the uneven stoichiometry within the complex during transcription, translation, and assembly processes. We also compare the regulatory strategies governing ATP synthase activity to meet varying energy demands in cyanobacteria and chloroplasts amid fluctuating natural environments. Furthermore, we delve into the role of ATP synthase in stress tolerance and photosynthetic carbon fixation efficiency in oxygenic photosynthetic organisms (OPsOs), along with the current researches on modifying ATP synthase to enhance carbon fixation efficiency under stress conditions. This review aims to offer theoretical insights and serve as a reference for understanding the functional mechanisms of ATP synthase, sparking innovative ideas for enhancing photosynthetic carbon fixation efficiency by utilizing ATP synthase as an effective module in OPsOs.

9.
Chem Asian J ; 18(16): e202300413, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37358431

RESUMO

For the catalytic combustion reaction of chlorinated volatile organic compounds (CVOCs), the redox properties and acid sites of the catalyst surface are key factors in determining the activity, selectivity, and chlorine-resistance stability. Herein, a series of SnMnOx catalysts for the catalytic combustion of CVOCs were prepared by the changing of Sn-doping way to regulate the electron valance state of Mn element, including reflux (R-SnMnOx ), co-precipitation (C-SnMnOx ) and impregnation (I-SnMnOx ). It was discovered that the R-SnMnOx catalyst had better activity and chlorine resistance than the R-MnOx , C-SnMnOx and I-SnMnOx catalyst, and we discovered that the doping ways of Sn in MnOx catalyst could regulate greatly the surface acidity, active oxygen species, the chemical state of Mnn+ species, and redox ability. Especially, the R-SnMnOx catalysts exhibit excellent water resistance, and the reasons were related to the strong interaction of Snn+ and Mnn+ , which could promote obviously the dispersion of active Mn species, form a large number of acid sites, provide the abundant lattice oxygen species, and own the excellent redox ability, which accelerate the rate of charge transfer between Snn+ and Mnn+ (Sn4+ +Mn2+ →Sn2+ +Mn4+ ) to produce the abundant active species and accelerate the rapid conversion of benzene and intermediates conversion.

10.
J Colloid Interface Sci ; 622: 549-561, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35526413

RESUMO

Due to the accumulation of heavy metal compounds produced by the sintering process in steel industry, the catalysts used for low-temperature selective catalytic reduction of NO with NH3 (NH3-SCR) might be seriously deactivated. In this work, the deactivation effect of PbCl2, Pb(NO3)2, and PbSO4 on Mn-Ce activated carbon supported catalyst for low-temperature NH3-SCR of NO was investigated and compared. Poisoned catalysts were provided by impregnating fresh catalysts with Pb(NO3)2, PbSO4 and PbCl2 aqueous solutions, respectively. Deactivation could be observed on the poisoned samples, and the deactivation degree was following PbCl2 > PbSO4 > Pb(NO3)2. The catalytic activities of all samples were tested, and the physicochemical properties of fresh and poisoned catalysts were assessed. PbCl2 caused the most severe deactivation of the catalyst, owing to its poor redox property and surface acidity. Cl- could also react with Mn active sites to form -O-Mn-Cl bonds, resulting in additional acid sites, although these newly generated sites were not reactive in NH3-SCR reaction process. PbSO4 exhibited moderate poisoning effect due to the addition of SO42-, which created new Brønsted acid sites, facilitating the NH3 adsorption and NO reduction. Pb(NO3)2 had the least poisoning impact on the catalyst due to the NO3-, promoting the NH3 activation. The in situ DRIFTS results revealed that NH3-SCR reaction over all samples was governed by Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanism, and did not change due to the lead poisoning. Finally, a possible mechanistic model for different lead salts poisoning over Mn-Ce/AC catalyst was proposed.


Assuntos
Carvão Vegetal , Chumbo , Amônia/química , Catálise , Oxirredução , Temperatura
11.
Toxics ; 10(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36287836

RESUMO

The application of semiconductor photocatalysts with narrow band gaps is hindered by the rapid recombination of electron-hole pairs and limitation of multiple reactive oxygen species (ROS) synchronous generation. A n-n-type direct Z-scheme heterostructured photocatalyst was constructed based on the staggered band alignment of bismuth tungstate (Bi2WO6) and indium zinc sulfide (ZnIn2S4) to reveal the synergistic effect of charge separation and multiple ROS synchronous generation on boosting photocatalytic performance. Under irradiation, electrons in the conduction band (CB) of Bi2WO6 and holes in the valence band (VB) of ZnIn2S4 recombined at interface to prolong the lifetime of electrons in the CB of ZnIn2S4 and holes in the VB of Bi2WO6. Meanwhile, the multiple ROS synchronously generated to oxidize pollutant due to the strong redox ability of electrons of ZnIn2S4 and holes of Bi2WO6, which was determined by the CB potential of ZnIn2S4 and VB potential of Bi2WO6. The results provided valuable insights for the application of photocatalysts with a narrow band gap in the field of water pollution control.

12.
Ying Yong Sheng Tai Xue Bao ; 32(2): 571-580, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33650367

RESUMO

Peat bogs, which cover only 3% of the global land surface, store about 30% of the global soil carbon (C), and are important carbon pools in terrestrial ecosystems. Dissolved organic matter (DOM) is an important part of carbon cycle in peatland, and also an important participant in biogeo-chemical process of peat. The variation of redox ability of DOM and inorganic ions in surface water, groundwater, and pore water of two sampling peatland (minerotrophic fen, LB; ombrotrophic bog, OS) were analyzed using novel electrochemical method and stable carbon isotope. The results showed that in the LB plot, inorganic elements were rich, and that anaerobic respiration dominated by inorganic electron acceptor was the main process. The redox ability differed across different LB water sources (surface water, groundwater, and pore water), which was mainly affected by the actual redox potentials. Iron and sulfate were generally in reduced state in the profile of pore water. The reaction level and depth of redox active groups of DOM which participated in redox process were influenced by inorganic electron acceptor. In the OS plot, organic matter was extremely rich, and organic electron acceptor contributed significantly in redox process. The redox ability of OS water samples from different sources performed differently, which was also mainly attributed to the actual redox potentials. The redox ability of pore water profile was affected by the chemical composition in peat substance at different depths. Therefore, electron accepting capacities (EAC) and oxidation index (OI) values could be used to identify the redox conditions along the gradient and to indicate the redox state of organic matter in aquatic systems.


Assuntos
Água Subterrânea , Solo , Carbono , Ecossistema , Humanos , Áreas Alagadas
13.
Chem Asian J ; 15(22): 3845-3852, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32918363

RESUMO

With the development of hydrogen-energy economy, it is urgent for researchers to explore high effective non-noble metal electrocatalysts for oxygen evolution reaction (OER). Nickel-based selenides have good conductivity and easy to regulate, which make them to be a promising OER electrocatalysts. Hence, many researchers engineering the structure of Nickel-based selenides to further improve the OER performance. In this paper, NixFe1-x Se2 porous-nano-microspheres with different ratio were synthesized. Results confirm that Fe not only affects the number of active sites in NiSe2 , but also affects the intrinsic activity by forming lattice defects. Besides, introduction of Fe can change the redox ability of Ni cation and Se anion, thus, reducing the average valence state of Ni cation in NiOOH. As a result, the current density of OER is improved remarkably. When the current density reaches 10 mA cm-2 , the overpotential is only 285 mV.

14.
J Colloid Interface Sci ; 572: 281-296, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32251907

RESUMO

Three-dimensionally macroporous (3DM) MnZrOx catalysts were fabricated to reveal the structure and Zr-doping effects on both physicochemical properties and propane combustion behaviors. The increasing addition of zirconium is favorable for the formation of 3DM structure and amorphous Mn-Zr solid solution, leading to tunable physicochemical properties. The significant activity improvement after zirconium addition was originally attributable to the superior redox ability, higher oxygen mobility and more abundant oxygen vacancy. The excellent catalytic activity, cycling stability and water resistant ability over 3DM Mn0.6Zr0.4Ox make it a promising material for hydrocarbons elimination. The comparative TPSR, in situ DRIFTs and kinetics study over 3DM and bulk catalysts emphasize the advantageous function of 3DM architecture on promoting propane adsorption, oxidation and lattice oxygen mobility.

15.
Environ Technol ; 38(10): 1285-1294, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27611824

RESUMO

The properties and characteristics of metal oxide and sulfate catalysts with different active elements for selective catalytic reduction of NO with NH3 were investigated. Cerium-based oxide catalyst showed the widest temperature window for NO x removal and manganese-based oxide catalyst exhibited the best catalytic performance at low temperature. For all the catalysts, the SCR activities at low temperature were directly related with the redox abilities of catalysts. The existence of sulfate groups inhibited the redox abilities of active species for sulfate catalysts compared with the metal oxide catalysts. The catalytic activities of CeWTi-S and MnWTi-S were seriously decreased in contrast to CeWTi-N and MnWTi-N. The temperature window of CuWTi-S was shifted toward higher temperature comparing with CuWTi-N. The FeWTi-N and FeWTi-S catalysts both showed high NO x conversion in the temperature range between 300°C and 400°C and N2O concentrations for iron-based samples were least among the same kind of catalysts. The abundance of acid sites and weak stability of surface sulfate groups for iron- and copper-based sulfate catalysts might be the main reasons accounting for the better NO x conversion in the medium-temperature range.


Assuntos
Poluentes Atmosféricos/química , Amônia/química , Metais Pesados/química , Óxido Nítrico/química , Óxidos/química , Sulfatos/química , Poluição do Ar/prevenção & controle , Catálise , Oxirredução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA