Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 118(5): 1455-1474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38394181

RESUMO

Class I glutaredoxins (GRXs) are catalytically active oxidoreductases and considered key proteins mediating reversible glutathionylation and deglutathionylation of protein thiols during development and stress responses. To narrow in on putative target proteins, it is mandatory to know the subcellular localization of the respective GRXs and to understand their catalytic activities and putative redundancy between isoforms in the same compartment. We show that in Arabidopsis thaliana, GRXC1 and GRXC2 are cytosolic proteins with GRXC1 being attached to membranes through myristoylation. GRXC3 and GRXC4 are identified as type II membrane proteins along the early secretory pathway with their enzymatic function on the luminal side. Unexpectedly, neither single nor double mutants lacking both GRXs isoforms in the cytosol or the ER show phenotypes that differ from wild-type controls. Analysis of electrostatic surface potentials and clustering of GRXs based on their electrostatic interaction with roGFP2 mirrors the phylogenetic classification of class I GRXs, which clearly separates the cytosolic GRXC1 and GRXC2 from the luminal GRXC3 and GRXC4. Comparison of all four studied GRXs for their oxidoreductase function highlights biochemical diversification with GRXC3 and GRXC4 being better catalysts than GRXC1 and GRXC2 for the reduction of bis(2-hydroxyethyl) disulfide. With oxidized roGFP2 as an alternative substrate, GRXC1 and GRXC2 catalyze the reduction faster than GRXC3 and GRXC4, which suggests that catalytic efficiency of GRXs in reductive reactions depends on the respective substrate. Vice versa, GRXC3 and GRXC4 are faster than GRXC1 and GRXC2 in catalyzing the oxidation of pre-reduced roGFP2 in the reverse reaction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citosol , Glutarredoxinas , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Citosol/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Via Secretória , Filogenia
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173050

RESUMO

Mycobacterium tuberculosis (Mtb) causes tuberculosis and, during infection, is exposed to reactive oxygen species and reactive nitrogen intermediates from the host immune response that can cause DNA damage. UvrD-like proteins are involved in DNA repair and replication and belong to the SF1 family of DNA helicases that use ATP hydrolysis to catalyze DNA unwinding. In Mtb, there are two UvrD-like enzymes, where UvrD1 is most closely related to other family members. Previous studies have suggested that UvrD1 is exclusively monomeric; however, it is well known that Escherichia coli UvrD and other UvrD family members exhibit monomer-dimer equilibria and unwind as dimers in the absence of accessory factors. Here, we reconcile these incongruent studies by showing that Mtb UvrD1 exists in monomer, dimer, and higher-order oligomeric forms, where dimerization is regulated by redox potential. We identify a 2B domain cysteine, conserved in many Actinobacteria, that underlies this effect. We also show that UvrD1 DNA-unwinding activity correlates specifically with the dimer population and is thus titrated directly via increasing positive (i.e., oxidative) redox potential. Consistent with the regulatory role of the 2B domain and the dimerization-based activation of DNA unwinding in UvrD family helicases, these results suggest that UvrD1 is activated under oxidizing conditions when it may be needed to respond to DNA damage during infection.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Reparo do DNA/fisiologia , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/genética , Cisteína/química , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Helicases/genética , Reparo do DNA/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples , Dimerização , Oxirredução , Ligação Proteica , Domínios Proteicos/genética
3.
J Biol Chem ; 299(1): 102780, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496071

RESUMO

Ischemia and reperfusion affect multiple elements of cardiomyocyte electrophysiology, especially within the mitochondria. We previously showed that in cardiac monolayers, upon reperfusion after coverslip-induced ischemia, mitochondrial inner membrane potential (ΔΨ) unstably oscillates between polarized and depolarized states, and ΔΨ instability corresponds with arrhythmias. Here, through confocal microscopy of compartment-specific molecular probes, we investigate the mechanisms underlying the postischemic ΔΨ oscillations, focusing on the role of Ca2+ and oxidative stress. During reperfusion, transient ΔΨ depolarizations occurred concurrently with periods of increased mitochondrial oxidative stress (5.07 ± 1.71 oscillations/15 min, N = 100). Supplementing the antioxidant system with GSH monoethyl ester suppressed ΔΨ oscillations (1.84 ± 1.07 oscillations/15 min, N = 119, t test p = 0.027) with 37% of mitochondrial clusters showing no ΔΨ oscillations (versus 4% in control, odds ratio = 14.08, Fisher's exact test p < 0.001). We found that limiting the production of reactive oxygen species using cyanide inhibited postischemic ΔΨ oscillations (N = 15, t test p < 10-5). Furthermore, ΔΨ oscillations were not associated with any discernable pattern in cell-wide oxidative stress or with the changes in cytosolic or mitochondrial Ca2+. Sustained ΔΨ depolarization followed cytosolic and mitochondrial Ca2+ increase and was associated with increased cell-wide oxidative stress. Collectively, these findings suggest that transient bouts of increased mitochondrial oxidative stress underlie postischemic ΔΨ oscillations, regardless of Ca2+ dynamics.


Assuntos
Mitocôndrias Cardíacas , Estresse Oxidativo , Humanos , Cálcio/metabolismo , Isquemia/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reperfusão
4.
J Comput Chem ; 45(28): 2383-2396, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38923574

RESUMO

The evaluation of oxidation and reduction potentials is a pivotal task in various chemical fields. However, their accurate prediction by theoretical computations, which is a complementary task and sometimes the only alternative to experimental measurement, may be often resource-intensive and time-consuming. This paper addresses this challenge through the application of machine learning techniques, with a particular focus on graph-based methods (such as graph edit distances, graph kernels, and graph neural networks) that are reviewed to enlighten their deep links with theoretical chemistry. To this aim, we establish the ORedOx159 database, a comprehensive, homogeneous (with reference values stemming from density functional theory calculations), and reliable resource containing 318 one-electron reduction and oxidation reactions and featuring 159 large organic compounds. Subsequently, we provide an instructive overview of the good practice in machine learning and of commonly utilized machine learning models. We then assess their predictive performances on the ORedOx159 dataset through extensive analyses. Our simulations using descriptors that are computed in an almost instantaneous way result in a notable improvement in prediction accuracy, with mean absolute error (MAE) values equal to 5.6 kcal mol - 1 for reduction and 7.2 kcal mol - 1 for oxidation potentials, which paves a way toward efficient in silico design of new electrochemical systems.

5.
J Comput Chem ; 45(14): 1177-1186, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38311976

RESUMO

In the present study, we have investigated factors affecting the accuracy of computational chemistry calculation of redox potentials, namely the gas-phase ionization energy (IE) and electron affinity (EA), and the continuum solvation effect. In general, double-hybrid density functional theory methods yield IEs and EAs that are on average within ~0.1 eV of our high-level W3X-L benchmark, with the best performing method being DSD-BLYP/ma-def2-QZVPP. For lower-cost methods, the average errors are ~0.2-0.3 eV, with ωB97X-3c being the most accurate (~0.15 eV). For the solvation component, essentially all methods have an average error of ~0.3 eV, which shows the limitation of the continuum solvation model. Curiously, the directly calculated redox potentials show errors of ~0.3 eV for all methods. These errors are notably smaller than what can be expected from error propagation with the two components (IE and EA, and solvation effect). Such a discrepancy can be attributed to the cancellation of errors, with the lowest-cost GFN2-xTB method benefiting the most, and the most accurate ωB97X-3c method benefiting the least. For organometallic species, the redox potentials show large deviations exceeding ~0.5 eV even for DSD-BLYP. The large errors are attributed to those for the gas-phase IEs and EAs, which represents a major barrier to the accurate calculation of redox potentials for such systems.

6.
Small ; : e2403156, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874058

RESUMO

Energy-efficient glass windows are pivotal in modern infrastructure striving toward the "Zero energy" concept. Electrochromic (EC) energy storage devices emerge as a promising alternative to conventional glass, yet their widespread commercialization is impeded by high costs and dependence on external power sources. Addressing this, redox potential-based self-powered electrochromic (RP-SPEC) devices are introduced leveraging established EC materials like tungsten oxide (WO3) and vanadium-doped nickel oxide (V-NiO) along with aluminum (Al) as an anode. These devices produce open circuit voltages (OCV) exceeding ±0.3 V, enabling autonomous operation for multiple cycles. The WO3 film exhibits 1% transmission and 88% modulation in the colored state at 550 nm with a mere 260 nm thickness. The redox interactions facilitate coloring and bleaching cycles without external power, while photo-charging rejuvenates the system. Notably, the inherent voltages of the RP-SPEC device offer dual functionality, powering electronic devices for up to 81 h. Large-area (≈28 cm2) device feasibility is demonstrated, paving the way for industrial adoption. The RP-SPEC device promises to revolutionize smart window technology by offering both energy efficiency and autonomous operation, thus advancing sustainable infrastructure.

7.
Small ; 20(40): e2402278, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38822712

RESUMO

The rapid proliferation of power sources equipped with lithium-ion batteries poses significant challenges in terms of post-scrap recycling and environmental impacts, necessitating urgent attention to the development of sustainable solutions. The cathode direct regeneration technologies present an optimal solution for the disposal of degraded cathodes, aiming to non-destructively re-lithiate and straightforwardly reuse degraded cathode materials with reasonable profits and excellent efficiency. Herein, a potential-regulated strategy is proposed for the direct recycling of degraded LiFePO4 cathodes, utilizing low-cost Na2SO3 as a reductant with lower redox potential in the alkaline systems. The aqueous re-lithiation approach, as a viable alternative, not only enables the re-lithiation of degraded cathode while ignoring variation in Li loss among different feedstocks but also utilizes the rapid sintering process to restore the cathode microstructure with desirable stoichiometry and crystallinity. The regenerated LiFePO4 exhibits enhanced electrochemical performance with a capacity of 144 mA h g-1 at 1 C and a high retention of 98% after 500 cycles at 5 C. Furthermore, this present work offers considerable prospects for the industrial implementation of directly recycled materials from lithium-ion batteries, resulting in improved economic benefits compared to conventional leaching methods.

8.
Small ; : e2400483, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092666

RESUMO

The development of high-energy-density cathode materials is regarded as the ultimate goal of alkali metal-ion batteries energy storage. However, the strategy of regulating specific capacity is limited by the theoretical capacity, and meanwhile focusing on improving capacity will lead to structural destructions. Herein, a novel perspective is proposed that tuning the electronic band structure by introducing highly electronegative fluoride atoms in NaxTMO2-yFy (0 < x < 1, 0 < y < 2) model compounds to improve redox potential for developing high-energy-density layered oxides. Highly electronegative fluoride atoms is introduced into P2-type Na0.67Fe0.5Mn0.5O2 (NFM), and the thus fluoride NFM (F-NFM) cathode achieved high redox potential (3.0 V) and high energy density (446 Wh kg-1). Proved by structural characterizations, fluorine atoms are successfully incorporated into oxygen sites in NFM lattice. Ultraviolet photoelectron spectroscopy is applied to quantitatively analyze the improved redox potential of F-NFM, which is achieved by the decreased valence band energy in electronic band structure due to the strongly electrophilic fluoride ions. Moreover, fluoride atoms can stabilize the local environment of NFM and improve its redox potential. The work provides a perspective to improve redox potential by tuning the electronic band structure in layered oxides and developing high-energy-density alkali metal-ion batteries.

9.
Planta ; 260(2): 51, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995415

RESUMO

MAIN CONCLUSION: Reactive nitrogen species mitigate the deteriorative effect of accelerated seed ageing by affecting the glutathione concentration and activities of GR and GPX-like. The treatment of apple (Malus domestica Borkh.) embryos isolated from accelerated aged seeds with nitric oxide-derived compounds increases their vigour and is linked to the alleviation of the negative effect of excessive oxidation processes. Reduced form of glutathione (GSH) is involved in the maintenance of redox potential. Glutathione peroxidase-like (GPX-like) uses GSH and converts it to oxidised form (GSSG), while glutathione reductase (GR) reduces GSSG into GSH. The aim of this work was to investigate the impact of the short-time NOx treatment of embryos isolated from apple seeds subjected to accelerated ageing on glutathione-related parameters. Apple seeds were subjected to accelerated ageing for 7, 14 or 21 days. Isolated embryos were shortly treated with NOx and cultured for 48 h. During ageing, in the axes of apple embryos, GSH and GSSG levels as well as half-cell reduction potential remained stable, while GR and GPX-like activities decreased. However, the positive effect of NOx in the vigour preservation of embryos isolated from prolonged aged seeds is linked to the increased total glutathione pool, and above all, higher GSH content. Moreover, NOx increased the level of transcripts encoding GPX-like and stimulated enzymatic activity. The obtained results indicate that high seed vigour related to the mode of action of NO and its derivatives is closely linked to the maintenance of higher GSH levels.


Assuntos
Glutationa , Malus , Sementes , Malus/genética , Malus/metabolismo , Sementes/metabolismo , Sementes/genética , Glutationa/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Glutationa Redutase/metabolismo , Glutationa Redutase/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Oxirredução , Óxido Nítrico/metabolismo , Regulação da Expressão Gênica de Plantas
10.
J Exp Bot ; 75(8): 2299-2312, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301663

RESUMO

Barley is a staple crop of major global importance and relatively resilient to a wide range of stress factors in the field. Transgenic reporter lines to investigate physiological parameters during stress treatments remain scarce. We generated and characterized transgenic homozygous barley lines (cv. Golden Promise Fast) expressing the genetically encoded biosensor Grx1-roGFP2, which indicates the redox potential of the major antioxidant glutathione in the cytosol. Our results demonstrated functionality of the sensor in living barley plants. We determined the glutathione redox potential (EGSH) of the cytosol to be in the range of -308 mV to -320 mV. EGSH was robust against a combined NaCl (150 mM) and water deficit treatment (-0.8 MPa) but responded with oxidation to infiltration with the phytotoxic secretome of the necrotrophic fungus Botrytis cinerea. The generated reporter lines are a novel resource to study biotic and abiotic stress resilience in barley, pinpointing that even severe abiotic stress leading to a growth delay does not automatically induce cytosolic EGSH oxidation, while necrotrophic pathogens can undermine this robustness.


Assuntos
Técnicas Biossensoriais , Hordeum , Citosol/metabolismo , Hordeum/genética , Hordeum/metabolismo , Estresse Fisiológico , Oxirredução , Glutationa/metabolismo , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA