Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.310
Filtrar
1.
Nano Lett ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917338

RESUMO

Herein, we introduce a photobiocidal surface activated by white light. The photobiocidal surface was produced through thermocompressing a mixture of titanium dioxide (TiO2), ultra-high-molecular-weight polyethylene (UHMWPE), and reduced graphene oxide (rGO) powders. A photobiocidal activity was not observed on UHMWPE-TiO2. However, UHMWPE-TiO2@rGO exhibited potent photobiocidal activity (>3-log reduction) against Staphylococcus epidermidis and Escherichia coli bacteria after a 12 h exposure to white light. The activity was even more potent against the phage phi 6 virus, a SARS-CoV-2 surrogate, with a >5-log reduction after 6 h exposure to white light. Our mechanistic studies showed that the UHMWPE-TiO2@rGO was activated only by UV light, which accounts for 0.31% of the light emitted by the white LED lamp, producing reactive oxygen species that are lethal to microbes. This indicates that adding rGO to UHMWPE-TiO2 triggered intense photobiocidal activity even at shallow UV flux levels.

2.
Nano Lett ; 24(2): 672-680, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166484

RESUMO

Dendritic Li deposition, an unstable solid-electrolyte interphase (SEI), and a nearly infinite relative volume change during cycling are three major obstacles to the practical application of Li metal batteries. Herein, we introduce a compressible and elastic reduced graphene oxide sponge (rGO-S) to simultaneously eliminate Li dendrite growth, stabilize the SEI, and accommodate the volume change. The volume change is contained by compressing and expanding the rGO-S anode, which effectively releases the Li plating-induced stress during cycling. The smooth and dense Li metal is deposited on rGO-S without dendrites, which preserves the SEI, reduces consumption of the electrolyte, and prevents the formation of Li debris. The half-cells employing rGO-S show a steady and high Coulombic efficiency. The Li@rGO-S symmetric cells demonstrate excellent cycling stability over 1200 cycles with a low overpotential. When paired with LiFePO4 (LFP), the Li@rGO-S||LFP full cells exhibit a high specific capacity (150.3 mAh g-1 at 1C), superior rate performance, and good capacity retention.

3.
Nano Lett ; 24(26): 8055-8062, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904262

RESUMO

The unstable solid electrolyte interface (SEI) formed by uncontrollable electrolyte degradation, which leads to dendrite growth and Coulombic efficiency decay, hinders the development of Li metal anodes. A controllable desolvation process is essential for the formation of stable SEI and improved lithium metal deposition behavior. Here, we show a functional artificial interface protective layer comprised of chondroitin sulfate-reduced graphene oxide (CrG), on which polar functional groups are distributed to effectively reduce the energy barrier for desolvation of Li+ and effectively alienate solvent molecules to avoid solvent involvement in SEI formation, thus promoting the formation of a LiF-rich SEI. Consequently, stable Coulombic efficiencies of 98.4% were achieved after 500 cycles in a Li//Cu cell. Moreover, the LiFePO4 full cells achieve steady circulation (470 cycles at 80%, 1 C) with a negative/positive electrode capacity ratio of 2.87. Our multifunctional artificial interface protective layer provides a new way to advance Li metal batteries.

4.
Curr Issues Mol Biol ; 46(5): 4489-4505, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38785540

RESUMO

In this work, we propose a new technique involving the modification of commercial screen-printed carbon electrodes with electrochemically reduced graphene oxide to serve as the starting point of a future electrochemical biosensor for the detection of two osteogenic biomarkers: alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2). The electrodes were characterized after each modification by cyclic voltammetry and electrochemical impedance spectroscopy, showing the appropriate electrochemical characteristics for each modification type. The results obtained from scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements are well correlated with each other, demonstrating the successful modification of the electrodes with graphene oxide and its subsequent reduction. The bioreceptors were immobilized on the electrodes by physical adsorption, which was confirmed by electrochemical methods, structural characterization, and contact angle measurements. Finally, the functionalized electrodes were incubated with the specific target analytes and the detection relied on monitoring the electrochemical changes occurring after the hybridization process. Our results indicated that the pilot platform has the ability to detect the two biomarkers up to 1 nM, with increased sensitivity observed for RUNX2, suggesting that after further optimizations, it has a high potential to be employed as a future biosensor.

5.
Small ; 20(3): e2208135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37587762

RESUMO

High-efficiency electromagnetic (EM) wave (EMW)-absorbing materials have attracted extensive scientific and technical interest. Although identifying the dominant EM loss mechanism in dielectric-loss materials is indispensable, it is challenging due to a complex synergism between dipole/interfacial polarization and conduction loss. Modulation of defects and microstructures can be a possible approach to determine the dominant EM loss mechanism and realize high-efficiency absorption. Herein, 2D reduced graphene oxide (rGO) flakes are integrated into a 3D hollow bowl-like structure, which increases defect sites (i.e., oxygen vacancy and lattice defect) and reduces the stacked thickness of rGO. Despite their lower stacked thicknesses, the hollow rGO bowls with more defects exhibit lower conductivities but higher permittivities. Accompanied by the transformation from 2D flakes to 3D hollow bowls, the dominant EM loss mechanism of rGO transforms from conduction loss to defect-induced polarization. Furthermore, the defect engineering and structural design endow rGO with well-matched impedance and strong EMW-absorbing capacity. A minimum reflection loss of -41.6 dB (1.3 mm) and an effective absorption bandwidth of 4.8 GHz (1.5 mm) is achieved at a filler loading of 5 wt%. This study will provide meaningful insights into the development of materials with superior EMW-absorbing performances via defect engineering and structural design.

6.
Small ; 20(15): e2306236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009511

RESUMO

The core strategy for constructing ultra-high-performance hybrid supercapacitors is the design of reasonable and effective electrode materials. Herein, a facile solvothermal-calcination strategy is developed to deposit the phosphate-functionalized Fe2O3 (P-Fe2O3) nanosheets on the reduced graphene oxide (rGO) framework. Benefiting from the superior conductivity of rGO and the high conductivity and fast charge storage dynamics of phosphate ions, the synthesized P-Fe2O3/rGO anode exhibits remarkable electrochemical performance with a high capacitance of 586.6 F g-1 at 1 A g-1 and only 4.0% capacitance loss within 10 000 cycles. In addition, the FeMoO4/Fe2O3/rGO nanosheets are fabricated by utilizing Fe2O3/rGO as the precursor. The introduction of molybdates successfully constructs open ion channels between rGO layers and provides abundant active sites, enabling the excellent electrochemical features of FeMoO4/Fe2O3/rGO cathode with a splendid capacity of 475.4 C g-1 at 1 A g-1. By matching P-Fe2O3/rGO with FeMoO4/Fe2O3/rGO, the constructed hybrid supercapacitor presents an admirable energy density of 82.0 Wh kg-1 and an extremely long working life of 95.0% after 20 000 cycles. Furthermore, the continuous operation of the red light-emitting diode for up to 30 min demonstrates the excellent energy storage properties of FeMoO4/Fe2O3/rGO//P-Fe2O3/rGO, which provides multiple possibilities for the follow-up energy storage applications of the iron-based composites.

7.
Small ; : e2306541, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409478

RESUMO

Bismuth (Bi) is regarded as a promising anode material for potassium ion batteries (PIBs) due to its high theoretical capacity, but the huge volume expansion during potassiation and intrinsic low conductivity cause poor cycle stability and rate capability. Herein, a unique Bi nanoparticles/reduced graphene oxide (rGO) composite is fabricated by anchoring the Bi nanoparticles over the rGO substrate through a ball-milling and thermal reduction process. As depicted by the in-depth XPS analysis, strong interfacial Bi-C bonding can be formed between Bi and rGO, which is beneficial for alleviating the huge volume expansion of Bi during potassiation, restraining the aggregation of Bi nanoparticles and promoting the interfacial charge transfer. Theoretical calculation reveals the positive effect of rGO to enhance the potassium adsorption capability and interfacial electron transfer as well as reduce the diffusion energy barrier in the Bi/rGO composite. Thereby, the Bi/rGO composite exhibits excellent potassium storage performances in terms of high capacity (384.8 mAh g-1 at 50 mA g-1 ), excellent cycling stability (197.7 mAh g-1 after 1000 cycles at 500 mA g-1 with no capacity decay) and superior rate capability (55.6 mAh g-1 at 2 A g-1 ), demonstrating its great potential as an anode material for PIBs.

8.
Small ; : e2311818, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837617

RESUMO

The exceptional and substantial electron affinity, as well as the excellent chemical and thermal stability of transition metal oxides (TMOs), infuse infinite vitality into multifunctional applications, especially in the field of electromagnetic wave (EMW) absorption. Nonetheless, the suboptimal structural mechanical properties and absence of structural regulation continue to hinder the advancement of TMOs-based aerogels. Herein, a novel 2D tantalum disulfide (2H-TaS2) reduction strategy is demonstrated to synthesize Ta2O5/reduced graphene oxide (rGO) heterointerface aerogels with unique characters. As the prerequisite, the defects, interfaces, and configurations of aerogels are regulated by varying the concentration of 2H-TaS2 to ensure the Ta2O5/rGO heterointerface aerogels with appealing EMW absorption properties such as a minimum reflection loss (RLmin) of -61.93 dB and an effective absorption bandwidth (EAB) of 8.54 GHz (7.80-16.34 GHz). This strategy provides valuable insights for designing advanced EMW absorbers. Meanwhile, the aerogel exhibits favorable thermal insulation performance with a value of 36 mW m-1 K-1, outstanding fire resistance capability, and exceptional mechanical energy dissipation performance, making it promising for applications in the aerospace industry and consumer electronics devices.

9.
Chemistry ; 30(4): e202303718, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37955413

RESUMO

On one hand electron or hole doping of quantum spin liquid (QSL) may unlock high-temperature superconductivity and on the other hand it can disrupt the spin liquidity, giving rise to a magnetically ordered ground state. Recently, a 2D MOF, Cu3 (HHTP)2 (HHTP - 2,3,6,7,10,11-hexahydroxytriphenylene), containing Cu(II) S= 1 / 2 ${{ 1/2 }}$ frustrated spins in the Kagome lattice is emerging as a promising QSL candidate. Herein, we present an elegant in situ redox-chemistry strategy of anchoring Cu3 (HHTP)2 crystallites onto diamagnetic reduced graphene oxide (rGO) sheets, resulting in the formation of electron-doped Cu3 (HHTP)2 -rGO composite which exhibited a characteristic semiconducting behavior (5 K to 300 K) with high electrical conductivity of 70 S ⋅ m-1 and a carrier density of ~1.1×1018  cm-3 at 300 K. Remarkably, no magnetic transition in the Cu3 (HHTP)2 -rGO composite was observed down to 1.5 K endorsing the robust spin liquidity of the 2D MOF Cu3 (HHTP)2 . Specific heat capacity measurements led to the estimation of the residual entropy values of 28 % and 34 % of the theoretically expected value for the pristine Cu3 (HHTP)2 and Cu3 (HHTP)2 -rGO composite, establishing the presence of strong quantum fluctuations down to 1.5 K (two times smaller than the value of the exchange interaction J).

10.
Nanotechnology ; 35(39)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38949268

RESUMO

The emergence of piezoelectric nanogenerators (PENGs) presents a promising alternative to supply energy demands within the realms of portable and miniaturized devices. In this article, the role of 2D transition metal dichalcogenide tungsten sulfide (WS2) and conductive rGO sheets as filler materials inside the polyvinylidene fluoride (PVDF) matrix on piezoelectric performances has been investigated extensively. The strong electrostatic interaction between C-F and C-H monomer bonds of PVDF interacted with the large surface area of the WS2nanosheets, increasing the electroactive polar phases and resulting in enhanced ferroelectricity in the PVDF/WS2nanocomposite. Further, the inclusion of rGO sheets in the PVDF/WS2composite allows mobile charge carriers to move freely through the conductive network provided by the rGO basal planes, which improves the internal polarization of the PVDF/WS2/rGO nanocomposites and increases the electrical performance of the PENGs. The PVDF/WS2/0.3rGO nanocomposite-based PENG exhibits maximum piezoresponses with ∼8.1 times enhancements in the output power density than the bare PVDF-based PENG. The mechanism behind the enhanced piezoresponses in the PVDF/WS2/rGO nanocomposites has been discussed.

11.
Nanotechnology ; 35(30)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38653214

RESUMO

Graphene oxide (GO)-based membranes hold significant promise for applications ranging from energy storage to protective coatings, to saline water and produced water treatment, owing to their chemical stability and unique barrier properties achieving a high selectivity for water permeation. However, unmodified GO membranes are not stable when submerged in liquid water, creating challenges with their commercial utilization in aqueous filtration and pervaporation applications. To mitigate this, we develop an approach to modify GO membranes through a combination of low temperature thermal reduction and metal cation crosslinking. We demonstrate that Zn2+-rGO and Fe3+-rGO membranes had the highest permeation flux of 8.3 ± 1.5 l m-2h-1and 7.0 ± 0.4 l m-2h-1, for saline water separation, respectively, when thermally reduced after metal cross-linking; These membranes maintained a high flux of 7.5 ± 0.7 l m-2h-1, and 5.5 ± 0.3 l m-2h-1for produced water separation, respectively. All the membranes had a salt rejection higher than 99%. Fe3+crosslinked membranes presented the highest organic solute rejections for produced water of 69%. Moreover, long term pervaporation testing was done for the Zn2+-rGO membrane for 12 h, and only a minor drop of 6% in permeation flux was observed, while Zn2+-GO had a drop of 24%. Both modifiers significantly enhanced the stability with Fe3+-rGO membranes displaying the highest mechanical abrasion resistance of 95% compared to non-reduced and non-crosslinked GO. Improved stability for all samples also led to higher selectivity to water over organic contaminants and only slightly reduced water flux across the membrane.

12.
Nanotechnology ; 35(37)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38861936

RESUMO

Lithium-ion batteries (LIBs) have revolutionized portable electronics, yet their conventional graphite anodes face capacity limitations. Integrating graphene and 3D molybdenum disulfide (MoS2) offers a promising solution. Ensuring a uniform distribution of 3D MoS2nanostructures within a graphene matrix is crucial for optimizing battery performance and preventing issues like agglomeration and capacity degradation. This study focuses on synthesizing a uniformly distributed paper wad structure by optimizing a composite of reduced graphene oxide RGO@MoS2through structural and morphological analyses. Three composites with varying graphene content were synthesized, revealing that the optimized sample containing 30 mg RGO demonstrates beneficial synergy between MoS2and RGO. The interconnected RGO network enhances reactivity and conductivity, addressing MoS2aggregation. Experimental results exhibit an initially superior capacity of 911 mAh g-1, retained at 851 mAh g-1even after 100 cycles at 0.1 A g-1current density, showcasing improved rate efficiency and long-term stability. This research underscores the pivotal role of graphene content in customizing RGO@MoS2composites for enhanced LIB performance.

13.
Nanotechnology ; 35(25)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295407

RESUMO

In this study, ceramic materials of Mg(Ti0.99Sn0.01)O3were synthesized and decorated on reduced graphene oxide, forming a nanocomposite of rGO/Mg(Ti0.99Sn0.01)O3(rGO/MTS001). The successful synthesis results were confirmed by XRD, UV-vis analysis, FT-IR, and SEM-EDS. The MTS001 has a flower-like morphology from scanning electron microscopy (SEM) analysis, and the nanocomposites of rGO/MTS001 showed MTS001 particles decorated on the rGO's surface. The electrochemical performance of rGO/MTS001 and MTS001 was investigated by determining the specific capacitance obtained in 1 M H2SO4solution by cyclic voltammetry, followed by galvanostatic charge-discharge analysis using a three-electrode setup. The rGO/MTS001 achieved a specific capacitance of 361.97 F g‒1, compared to MTS001 (194.90 F g‒1). The capacitance retention of rGO/MTS001 nanocomposite also depicted excellent cyclic stability of 95.72% after 5000 cycles at a current density of 0.1 A g‒1. The result showed that the nanocomposite of ceramics with graphene materials has a potential for high-performance supercapacitor electrodes.

14.
Nanotechnology ; 35(32)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38608318

RESUMO

A comparative study of the plasmon effect of Ag and Au nanoparticles on TiO2/rGO nanocomposite was carried out. The synthesis of Au and Ag nanoparticles was carried out by laser ablation. The morphology and structure of the nanocomposites were studied by EDA, HRTEM, XRD and Raman spectroscopy. It was shown that the absorption capacity of the nanocomposite material was increased in the visible range of the spectrum when Ag and Au nanoparticles were added to TiO2/rGO. This leads to an increase in their photocatalytic activity. The photocurrent generated by NC/Au 10-11films is in 3.8 times and NC/Ag 10-12is in 2 times higher compared to pure TiO2/rGO film. Similar results were obtained from experimental data on the dyes photodegradation. In the presence of plasmon nanoparticles a significant enhancement in the electrical properties of the TiO2/rGO nanocomposite was recorded. The charge carrier transfer resistance in nanocomposites was decreased by almost ∼7 times for NC/Au,10-11and ∼4 times for NC/Ag,10-12films compared to pure TiO2/rGO. In addition, for nanocomposites with Ag or Au nanoparticles, a decrease in the effective electron lifetime was observed. The data obtained allow us to conclude that plasmonic NPs have a synergistic effect in TiO2/rGO nanocomposites, which consists in modifying both their light-harvesting properties and charge-transport characteristics. The results obtained can be used for the design of materials with improved photocatalytic and optoelectronic characteristics.

15.
Anal Bioanal Chem ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878180

RESUMO

Organic-inorganic hybrid nanocomposites (OIHN), with tailored surface chemistry, offer ultra-sensitive architecture capable of detecting ultra-low concentrations of target analytes with precision. In the present work, a novel nano-biosensor was fabricated, acquainting dynamic synergy of reduced graphene oxide (rGO) decorated hexagonal boron nitride nanosheets (hBNNS) for detection of carcinoembryonic antigen (CEA). Extensive spectroscopic and microscopic analyses confirmed the successful hydrothermal synthesis of cross-linked rGO-hBNNS nanocomposite. Uniform micro-electrodes of rGO-hBNNS onto pre-hydrolyzed ITO were obtained via electrophoretic deposition (EPD) technique at low DC potential (15 V). Optimization of antibody incubation time, pH of supporting electrolyte, and immunoelectrode preparation was thoroughly investigated to enhance nano-biosensing efficacy. rGO-modified hBNNS demonstrated 29% boost in electrochemical performance over bare hBNNS, signifying remarkable electro-catalytic activity of nano-biosensor. The presence of multifunctional groups on the interface facilitated stable crosslinking chemistry, increased immobilization density, and enabled site-specific anchoring of Anti-CEA, resulting in improved binding affinity. The nano-biosensor demonstrated a remarkably low limit of detection of 5.47 pg/mL (R2 = 0.99963), indicating exceptional sensitivity and accuracy in detecting CEA concentrations from 0 to 50 ng/mL. The clinical evaluation confirmed its exceptional shelf life, minimal cross-reactivity, and robust recovery rates in human serum samples, thereby unraveling the potential for early, highly sensitive, and reliable CEA detection.

16.
Environ Res ; 244: 117966, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109960

RESUMO

The development of an effective sensing platform is critical for the electrochemical detection of heavy metal ions (HMIs) in water. In this study, we fabricated a newly designed sensor through the in situ assembly of reduced graphene oxide (rGO) and polyphosphate nanoparticles (polyP NPs) on a carbon cloth electrode via microorganism-mediated green biochemical processes. The characterization results revealed that the rGO produced via microbial reduction had a three-dimensional porous structure, serving as an exceptional scaffold for hosting polyP NPs, and the polyP NPs were evenly distributed on the rGO network. In terms of detecting HMIs, the numerous functional groups of polyP NPs play a major role in the coordination with the cations. This electrochemical sensor, based on polyP NPs/rGO, enabled the individual and simultaneous determination of lead ion (Pb2+) and copper ion (Cu2+) with detection limits of 1.6 nM and 0.9 nM, respectively. Additionally, the electrode exhibited outstanding selectivity for the target analytes in the presence of multiple interfering metal ions. The fabricated sensor was successfully used to determine Pb2+/Cu2+ in water samples with satisfactory recovery rates ranging from 92.16% to 104.89%. This study establishes a facile, cost-effective, and environmentally friendly microbial approach for the synthesis of electrode materials and the detection of environmental pollutants.


Assuntos
Cobre , Grafite , Nanopartículas Metálicas , Chumbo , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Eletrodos , Água , Íons
17.
Environ Res ; 245: 118057, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154565

RESUMO

Reduced graphene oxide/iron nanoparticles (rGO/FeNPs) synthesized by the chemical method have been used in Fenton oxidation of organic contaminants, yet little is known about biosynthesized rGO/FeNPs using green tea extract (GT) as how to activate persulfate in sulfate radical-based advanced oxidation processes. In this study, rGO/FeNPs were used to activate peroxydisulfate (PDS) for 17ß-estradiol (ßE2) and estriol (E3) removal. The rGO/FeNPs-PDS system removed 83.6% of ßE2 and 62.5% of E3 within 240 min, which was confirmed by a combination of adsorption and degradation via both radical and non-radical pathways. Four main reactive species in ßE2 and E3 degradation were observed, i.e., hydroxyl radical (·OH), sulfate radical (SO4·-), singlet oxygen (1O2) and electron transfer, with the respective contributions of ·OH (32.9 and 34.7%), SO4·- (16.1 and 19.7%), 1O2 (12.2 and 14.1%) and electron transfer (8.0 and 7.2%). Analysis of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), Electron Paramagnetic Resonance (EPR) and electrochemical measurements all indicated that beside the well-known role of Fe, CO from rGO through the generation of ·OH, SO4·-, 1O2 and electron transfer, as well as GT through electron transfer also participated in the activation of PDS. Finally, the degradation pathways of ßE2/E3 were proposed. Overall, this study provides a new insight into the biosynthesis of rGO/FeNPs to activate PDS for the oxidation of mixed emerging contaminants.


Assuntos
Nanocompostos , Sulfatos , Oxirredução , Nanocompostos/química , Ferro/química , Estriol
18.
Environ Res ; 248: 118391, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309562

RESUMO

Sulfonamides are a family of synthetic drugs with a broad-spectrum of antimicrobial activity. Like other antimicrobials, they have been found in aquatic environments, making their detection important. Herein, an electrochemical sensor was designed using tannic acid exfoliated few-layered MoS2 sheets, which were combined with a mixture of reduced graphene oxide (rGO) and graphite flakes (G). The rGO/G was formed using electrodeposition, by cycling from -0.5 to -1.5 V in an acidified sulfate solution with well dispersed GO and G. The exfoliated MoS2 sheets were drop cast over the wrinkled rGO/G surface to form the final sensor, GCE/rGO/G/ta-MoS2. The mixture of rGO/G was superior to pure rGO in formulating the sensor. The fabricated sensor exhibited an extended linear range from 0.1 to 566 µM, with a LOD of 86 nM, with good selectivity in the presence of various salts found in water and structurally related drugs from the sulfonamide family. The sensor showed very good reproducibility with the RSD at 0.48 %, repeatability and acceptable long term stability over a 10-day period. Good recovery from both tap and river water was achieved, with recovery ranging from 90.4 to 98.9 % for tap water and from 83.5 to 94.4 % for real river water samples.


Assuntos
Grafite , Nanocompostos , Polifenóis , Molibdênio , Técnicas Eletroquímicas , Reprodutibilidade dos Testes , Sulfanilamida , Água
19.
Environ Res ; 252(Pt 1): 118881, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582430

RESUMO

Nitrate reduction in bio-electrochemical systems (BESs) has attracted wide attention due to its low sludge yields and cost-efficiency advantages. However, the high resistance of traditional electrodes is considered to limit the denitrification performance of BESs. Herein, a new graphene/polypyrrole (rGO/PPy) modified electrode is fabricated via one-step electrodeposition and used as cathode in BES for improving nitrate removal from wastewater. The formation and morphological results support the successful formation of rGO/PPy nanohybrids and confirm the part covalent bonding of Py into GO honeycomb lattices to form a three-dimensional cross-linked spatial structure. The electrochemical tests indicate that the rGO/PPy electrode outperforms the unmodified electrode due to the 3.9-fold increase in electrochemical active surface area and 6.9-fold decrease in the charge transfer resistance (Rct). Batch denitrification activity tests demonstrate that the BES equipped with modified rGO/PPy biocathode could not only achieve the full denitrification efficiency of 100% with energy recovery (15.9 × 10-2 ± 0.14 A/m2), but also favor microbial attach and growth with improved biocompatible surface. This work provides a feasible electrochemical route to fabricate and design a high-performance bioelectrode to enhance denitrification in BESs.


Assuntos
Desnitrificação , Eletrodos , Grafite , Polímeros , Pirróis , Grafite/química , Polímeros/química , Pirróis/química , Técnicas Eletroquímicas/métodos , Fontes de Energia Bioelétrica , Nitratos/química , Carbono/química , Fibra de Carbono/química
20.
Environ Res ; 251(Pt 1): 118567, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432568

RESUMO

There has been a growing interest in the design and development of graphene based composite materials with superior performances for environmental catalytic applications. But in most of the studies the synthesis conditions require elevated temperatures and expensive working setups (high temperature furnaces, autoclaves, inert atmosphere conditions etc.). In this reported work, the nitrogen doped reduced graphene oxide supported CuCo2O4 (NG/CuCo2O4) composites were prepared through a simple one pot synthesis method under mild conditions (∼95 °C and air atmosphere) and successfully employed as catalysts for the reduction of toxic 4-nitrophenol (4NP). The characterization results revealed the successful formation of NG/CuCo2O4 composites with a possible charge transfer interaction between nitrogen doped reduced graphene oxide support of CuCo2O4. The NG/CuCo2O4 hybrids exhibited robust catalytic activity in 4NP reduction with an activity factor of 261.5 min-1 g-1. A 4NP conversion percentage which is as high as 99.5% was achieved within 11 min using the NG/CuCo2O4 catalyst. The detailed kinetic analysis confirmed the Langmuir-Hinshelwood model for the NG/CuCo2O4 catalysed 4NP reduction. The nitrogen doped reduced graphene oxide support modified the electronic levels of CuCo2O4 nanoparticles through electron transfer interactions and enhanced the catalytic activity of CuCo2O4 in NG/CuCo2O4 through improved adsorption of reactant ions and effective generation of active hydrogen species. The good reusability and stability along with profound activity of NG/CuCo2O4 catalyst makes it a promising material for wide scale catalytic applications.


Assuntos
Grafite , Nitrogênio , Nitrofenóis , Grafite/química , Nitrofenóis/química , Catálise , Nitrogênio/química , Oxirredução , Cobre/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Transporte de Elétrons , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA