Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39056876

RESUMO

Two innovative acceleration-layer configuration amendment (CA) schemes are proposed to achieve the CA of constrained redundant robot arms. Specifically, by applying the Zhang neurodynamics equivalency (ZNE) method, an acceleration-layer CA performance indicator is derived theoretically. To obtain a unified-layer inequality constraint by transforming from angle-layer and velocity-layer constraints to acceleration-layer constraints, five theorems and three corollaries are theoretically derived and rigorously proved. Then, together with the unified acceleration-layer bound constraint, an enhanced acceleration-layer CA scheme specially considering three-layer time-variant physical limits is proposed, and a simplified acceleration-layer CA scheme considering three-layer time-invariant physical limits is also proposed. The proposed CA schemes are finally formulated in the form of standard quadratic programming and are solved by a projection neurodynamics solver. Moreover, comparative simulative experiments based on a four-link planar arm and a UR3 spatial arm are performed to verify the efficacy and superiority of the proposed CA schemes. At last, physical experiments are conducted on a real Kinova Jaco2 arm to substantiate the practicability of the proposed CA schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA