Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Appl Toxicol ; 39(9): 1267-1282, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31215065

RESUMO

Ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate, also known as GenX, is a processing aid used in the manufacture of fluoropolymers. GenX is one of several chemistries developed as an alternative to long-chain poly-fluoroalkyl substances, which tend to have long clearance half-lives and are environmentally persistent. Unlike poly-fluoroalkyl substances, GenX has more rapid clearance, but has been detected in US and international water sources. There are currently no federal drinking water standards for GenX in the USA; therefore, we developed a non-cancer oral reference dose (RfD) for GenX based on available repeated dose studies. The review of the available data indicate that GenX is unlikely to be genotoxic. A combination of traditional frequentist benchmark dose models and Bayesian benchmark dose models were used derive relevant points of departure from mammalian toxicity studies. In addition, deterministic and probabilistic RfD values were developed using available tools and regulatory guidance. The two approaches resulted in a narrow range of RfD values for liver lesions observed in a 2-year bioassay in rats (0.01-0.02 mg/kg/day). The probabilistic approach resulted in the lower, i.e., more conservative RfD. The probabilistic RfD of 0.01 mg/kg/day results in a maximum contaminant level goal of 70 ppb. It is anticipated that these values, along with the hazard identification and dose-response modeling described herein, should be informative for risk assessors and regulators interested in setting health-protective drinking water guideline values for GenX.


Assuntos
Benchmarking , Água Potável/normas , Hidrocarbonetos Fluorados/toxicidade , Nível de Efeito Adverso não Observado , Propionatos/toxicidade , Padrões de Referência , Poluentes Químicos da Água/toxicidade , Animais , Humanos , Dose Letal Mediana , Modelos Animais , Ratos , Estados Unidos
2.
J Appl Toxicol ; 38(3): 351-365, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29064106

RESUMO

The current US Environmental Protection Agency (EPA) reference dose (RfD) for oral exposure to chromium, 0.003 mg kg-1  day-1 , is based on a no-observable-adverse-effect-level from a 1958 bioassay of rats exposed to ≤25 ppm hexavalent chromium [Cr(VI)] in drinking water. EPA characterizes the confidence in this RfD as "low." A more recent cancer bioassay indicates that Cr(VI) in drinking water is carcinogenic to mice at ≥30 ppm. To assess whether the existing RfD is health protective, neoplastic and non-neoplastic lesions from the 2 year cancer bioassay were modeled in a three-step process. First, a rodent physiological-based pharmacokinetic (PBPK) model was used to estimate internal dose metrics relevant to each lesion. Second, benchmark dose modeling was conducted on each lesion using the internal dose metrics. Third, a human PBPK model was used to estimate the daily mg kg-1 dose that would produce the same internal dose metric in both normal and susceptible humans. Mechanistic research into the mode of action for Cr(VI)-induced intestinal tumors in mice supports a threshold mechanism involving intestinal wounding and chronic regenerative hyperplasia. As such, an RfD was developed using incidence data for the precursor lesion diffuse epithelial hyperplasia. This RfD was compared to RfDs for other non-cancer endpoints; all RfD values ranged 0.003-0.02 mg kg-1  day-1 . The lowest of these values is identical to EPA's existing RfD value. Although the RfD value remains 0.003 mg kg-1  day-1 , the confidence is greatly improved due to the use of a 2-year bioassay, mechanistic data, PBPK models and benchmark dose modeling.


Assuntos
Bioensaio , Testes de Carcinogenicidade/métodos , Cromo/toxicidade , Poluentes Ambientais/toxicidade , Neoplasias Intestinais/induzido quimicamente , Modelos Biológicos , Administração Oral , Animais , Bioensaio/normas , Calibragem , Testes de Carcinogenicidade/normas , Cromo/administração & dosagem , Cromo/farmacocinética , Relação Dose-Resposta a Droga , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/farmacocinética , Feminino , Humanos , Neoplasias Intestinais/patologia , Masculino , Camundongos , Nível de Efeito Adverso não Observado , Ratos , Padrões de Referência , Medição de Risco , Especificidade da Espécie , Estados Unidos , United States Environmental Protection Agency
3.
Regul Toxicol Pharmacol ; 68(3): 387-401, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24491968

RESUMO

1,4-Dioxane is found in consumer products and is used as a solvent in manufacturing. Studies in rodents show liver tumors to be consistently reported after chronic oral exposure. However, there were differences in the reporting of non-neoplastic lesions in the livers of rats and mice. In order to clarify these differences, a reread of mouse liver slides from the 1978 NCI bioassay on 1,4-dioxane in drinking water was conducted. This reread clearly identified dose-related non-neoplastic changes in the liver; specifically, a dose-related increase in the hypertrophic response of hepatocytes, followed by necrosis, inflammation and hyperplastic hepatocellular foci. 1,4-Dioxane does not cause point mutations, DNA repair, or initiation. However, it appears to promote tumors and stimulate DNA synthesis. Using EPA Guidelines (2005), the weight of the evidence suggests that 1,4-dioxane causes liver tumors in rats and mice through cytotoxicity followed by regenerative hyperplasia. Specific key events in this mode of action are identified. A Reference Dose (RfD) of 0.05mg/kgday is proposed to protect against regenerative liver hyperplasia based on a benchmark dose (BMD) approach. Based on this RfD, a maximum contaminant level goal of 350µg/L is proposed using a default relative source contribution for water of 20%.


Assuntos
Dioxanos/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Fígado/efeitos dos fármacos , Solventes/toxicidade , Administração Oral , Animais , Dioxanos/normas , Relação Dose-Resposta a Droga , Água Potável/normas , Feminino , Hiperplasia/induzido quimicamente , Hiperplasia/patologia , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Modelos Biológicos , Medição de Risco , Solventes/normas
4.
J Appl Toxicol ; 34(5): 525-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23943231

RESUMO

High concentrations of hexavalent chromium [Cr(VI)] in drinking water induce villous cytotoxicity and compensatory crypt hyperplasia in the small intestines of mice (but not rats). Lifetime exposure to such cytotoxic concentrations increases intestinal neoplasms in mice, suggesting that the mode of action for Cr(VI)-induced intestinal tumors involves chronic wounding and compensatory cell proliferation of the intestine. Therefore, we developed a chronic oral reference dose (RfD) designed to be protective of intestinal damage and thus intestinal cancer. A physiologically based pharmacokinetic model for chromium in mice was used to estimate the amount of Cr(VI) entering each intestinal tissue section (duodenum, jejunum and ileum) from the lumen per day (normalized to intestinal tissue weight). These internal dose metrics, together with corresponding incidences for diffuse hyperplasia, were used to derive points of departure using benchmark dose modeling and constrained nonlinear regression. Both modeling techniques resulted in similar points of departure, which were subsequently converted to human equivalent doses using a human physiologically based pharmacokinetic model. Applying appropriate uncertainty factors, an RfD of 0.006 mg kg(-1) day(-1) was derived for diffuse hyperplasia-an effect that precedes tumor formation. This RfD is protective of both noncancer and cancer effects in the small intestine and corresponds to a safe drinking water equivalent level of 210 µg l(-1). This concentration is higher than the current federal maximum contaminant level for total Cr (100 µg l(-1)) and well above levels of Cr(VI) in US drinking water supplies (typically ≤ 5 µg l(-1)).


Assuntos
Testes de Carcinogenicidade/métodos , Cromo/toxicidade , Água Potável/normas , Neoplasias Intestinais/induzido quimicamente , Testes de Toxicidade Crônica/métodos , Poluentes Químicos da Água/toxicidade , Animais , Testes de Carcinogenicidade/normas , Relação Dose-Resposta a Droga , Água Potável/química , Feminino , Humanos , Hiperplasia , Neoplasias Intestinais/patologia , Masculino , Camundongos , Modelos Biológicos , Nível de Efeito Adverso não Observado , Padrões de Referência , Fatores Sexuais , Testes de Toxicidade Crônica/normas , Estados Unidos , United States Environmental Protection Agency
5.
J Appl Toxicol ; 33(12): 1395-406, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22936336

RESUMO

Sulfolane is a widely used industrial solvent that is often used for gas treatment (sour gas sweetening; hydrogen sulfide removal from shale and coal processes, etc.), and in the manufacture of polymers and electronics, and may be found in pharmaceuticals as a residual solvent used in the manufacturing processes. Sulfolane is considered a high production volume chemical with worldwide production around 18 000-36 000 tons per year. Given that sulfolane has been detected as a contaminant in groundwater, an important potential route of exposure is tap water ingestion. Because there are currently no federal drinking water standards for sulfolane in the USA, we developed a noncancer oral reference dose (RfD) based on benchmark dose modeling, as well as a tap water screening value that is protective of ingestion. Review of the available literature suggests that sulfolane is not likely to be mutagenic, clastogenic or carcinogenic, or pose reproductive or developmental health risks except perhaps at very high exposure concentrations. RfD values derived using benchmark dose modeling were 0.01-0.04 mg kg(-1) per day, although modeling of developmental endpoints resulted in higher values, approximately 0.4 mg kg(-1) per day. The lowest, most conservative, RfD of 0.01 mg kg(-1) per day was based on reduced white blood cell counts in female rats. This RfD was used to develop a tap water screening level that is protective of ingestion, viz. 365 µg l(-1). It is anticipated that these values, along with the hazard identification and dose-response modeling described herein, should be informative for risk assessors and regulators interested in setting health-protective drinking water guideline values for sulfolane.


Assuntos
Benchmarking , Água Potável , Modelos Teóricos , Tiofenos , Testes de Toxicidade , Poluentes Químicos da Água , Administração Oral , Animais , Relação Dose-Resposta a Droga , Água Potável/análise , Água Potável/normas , Água Subterrânea/química , Concentração Máxima Permitida , Nível de Efeito Adverso não Observado , Valores de Referência , Especificidade da Espécie , Tiofenos/análise , Tiofenos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Food Chem ; 110(2): 301-9, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26049220

RESUMO

Trace element content of fish feed and bluegill sunfish muscles (Lepomis macrochirus) from aquaculture and natural pond in Missouri were determined using the inductively coupled-plasma optical emission spectrometer (ICP-OES) and the direct mercury analyzer (DMA). Dietary intake rates of trace elements were estimated. Dogfish muscle (DORM-2) and lobster hepatopancreas (TORT-2) reference standards were used in trace element recovery and method validations. The average elemental concentrations (mg/kg diet, dry wt.) of fish feed were: As 1.81, Cd 2.37, Co 0.10, Cr 1.42, Cu 8.0, Fe 404, Mn 35.9, Ni 0.51, Pb 9.16, Se 1.71, Sn 20.7, V 0.09, Zn 118 and Hg 0.07. The mean elemental concentrations (µg/kg wet wt.) in bluegill muscles from both aquaculture and wild (in parenthesis) sources were: As 0.36 (0.06), Cd 0.28 (0.01), Co 0.0 (0.0), Cr 0.52 (0.05), Cu 0.38 (0.18), Fe 17.5 (2.43), Mn 0.18 (0.24), Ni 0.18 (0.04), Pb 1.03 (0.04), Se 0.34 (0.30), Sn 0.66 (0.42), V 0.02 (0.01), Zn 6.97 (9.13) and Hg 0.06 (0.24). Kruskal-Wallis chi square indicated significant differences in As, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sn, V, Zn and Hg (P<0.001), Se (P<0.01) and Mn (P<0.05) across the sampling locations. Dietary intake rates, estimated from weekly consumption of 228g of aquaculture and wild bluegills, posed no health risks for approximately 85% of all samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA