Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Adv Exp Med Biol ; 1403: 29-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495913

RESUMO

The backscatter coefficient is a fundamental property of tissues, much like the attenuation and sound speed. From the backscatter coefficient, different scatterer properties describing the underlying tissue can be used to characterize tissue state. Furthermore, because the backscatter coefficient is a fundamental property of a tissue, estimation of the backscatter coefficient should be able to be computed with system and operator independence. To accomplish system- and operator-independent estimates of the backscatter coefficient, a calibration spectrum must be obtained at the same system settings as the settings used to scan a tissue. In this chapter, we discuss three approaches to obtaining a calibration spectrum and compare the engineering tradeoffs associated with each approach. In addition, methods for reducing deterministic noise in the backscatter coefficient spectrum are considered and implementation of these techniques is discussed.


Assuntos
Som , Imagens de Fantasmas , Ultrassonografia
2.
Adv Exp Med Biol ; 1403: 85-104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495916

RESUMO

This chapter reviews some of the recent advances in the estimation of the local and the total attenuation, with an emphasis on reducing the bias and variance of the estimates. A special focus is put on describing the effect of power spectrum estimation on bias and variance, the introduction of regularization strategies, as well as on eliminating the need to use reference phantoms for compensating for system dependent effects.


Assuntos
Ultrassonografia , Imagens de Fantasmas
3.
J Ultrasound Med ; 42(1): 45-58, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35615811

RESUMO

OBJECTIVES: Accurately measuring the attenuation coefficient (AC) of reference phantoms is critical in clinical applications of quantitative ultrasound. Phantom AC measurement requires proper compensation of membrane transmission loss. Conventional methods require separate membrane samples to obtain membrane transmission loss. Unfortunately, separate membrane samples are often unavailable. A pulse-echo approach is proposed herein to compensate for membrane transmission loss without requiring separate membrane samples. METHODS: The proposed method consists of the following steps. First, the insertion loss, caused by phantom attenuation and membrane transmission loss, is measured. Second, the membrane reflection coefficient is measured. Third, the unknown acoustic parameters of the membrane and phantom material are estimated by fitting theoretical reflection coefficient to the measured one. Finally, the fitted parameters are used to estimate membrane transmission loss and phantom AC. The proposed method was validated through k-Wave simulations and phantom experiments. Experimental AC measurements were repeated on 5 distinct phantoms by 2 operators to assess the repeatability and reproducibility of the proposed method. Five transducers were used to cover a broad bandwidth (0.7-16 MHz). RESULTS: The acquired AC in the simulations had a maximum error of 0.06 dB/cm-MHz for simulated phantom AC values ranging from 0.5 to 1 dB/cm-MHz. The acquired AC in the experiments had a maximum error of 0.045 dB/cm-MHz for phantom AC values ranging from 0.28 to 1.48 dB/cm-MHz. Good repeatability and cross-operator reproducibility were observed with a mean coefficient of variation below 0.054. CONCLUSION: The proposed method simplifies phantom AC measurement while providing satisfactory accuracy and precision.


Assuntos
Acústica , Ultrassom , Humanos , Reprodutibilidade dos Testes , Ultrassonografia/métodos , Imagens de Fantasmas
4.
Pediatr Radiol ; 52(3): 445-452, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34866159

RESUMO

BACKGROUND: Radiation dose metrics vary by the calibration reference phantom used to report doses. By convention, 16-cm diameter cylindrical polymethyl-methacyrlate phantoms are used for head imaging and 32-cm diameter phantoms are used for body imaging in adults. Actual usage patterns in children remain under-documented. OBJECTIVE: This study uses the University of California San Francisco International CT Dose Registry to describe phantom selection in children by patient age, body region and scanner manufacturer, and the consequent impact on radiation doses. MATERIALS AND METHODS: For 106,837 pediatric computed tomography (CT) exams collected between Jan. 1, 2015, and Nov. 2, 2020, in children up to 17 years of age from 118 hospitals and imaging facilities, we describe reference phantom use patterns by body region, age and manufacturer, and median and 75th-percentile dose-length product (DLP) and volume CT dose index (CTDIvol) doses when using 16-cm vs. 32-cm phantoms. RESULTS: There was relatively consistent phantom selection by body region. Overall, 98.0% of brain and skull examinations referenced 16-cm phantoms, and 95.7% of chest, 94.4% of abdomen and 100% of cervical-spine examinations referenced 32-cm phantoms. Only GE deviated from this practice, reporting chest and abdomen scans using 16-cm phantoms with some frequency in children up to 10 years of age. DLP and CTDIvol values from 16-cm phantom-referenced scans were 2-3 times higher than 32-cm phantom-referenced scans. CONCLUSION: REFERENCE PHANTOM SELECTION IS HIGHLY CONSISTENT, WITH A SMALL BUT SIGNIFICANT NUMBER OF ABDOMEN AND CHEST SCANS (~5%) USING 16-CM PHANTOMS IN YOUNGER CHILDREN, WHICH PRODUCES DLP VALUES APPROXIMATELY TWICE AS HIGH AS EXAMS REFERENCED TO 32-CM PHANTOMS.


Assuntos
Tórax , Tomografia Computadorizada por Raios X , Adulto , Criança , Humanos , Imagens de Fantasmas , Doses de Radiação , Sistema de Registros , Tomografia Computadorizada por Raios X/métodos
5.
J Radiol Prot ; 42(3)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35921807

RESUMO

In line with the activities of Task Group 103 under the International Commission on Radiological Protection (ICRP), the present study was conducted to develop a new set of alimentary tract organs consisting of the oral cavity, oesophagus, stomach, small intestine, and colon for the newborn, 1 year-old, 5 year-old, 10 year-old, and 15 year-old males and females for use in the pediatric mesh-type reference computational phantoms (MRCPs). The developed alimentary tract organs of the pediatric MRCPs, while nearly preserving the original topology and shape of those of the pediatric voxel-type reference computational phantoms (VRCPs) of ICRPPublication 143, present considerable anatomical improvement and include all micrometre-scale target and source regions as prescribed in ICRPPublication 100. To investigate the dosimetric impact of the developed alimentary tract organs, organ doses and specific absorbed fractions were computed for certain external exposures to photons and electrons and internal exposures to electrons, respectively, which were then compared with the values computed using the current ICRP models (i.e. pediatric VRCPs and ICRP-100 stylised models). The results showed that for external exposures to penetrating radiations (i.e. photons >0.04 MeV), there was generally good agreement between the compared values, within a 10% difference, except for the oral mucosa. For external exposures to weakly penetrating radiations (i.e. low-energy photons and electrons), there were significant differences, up to a factor of ∼8300, owing to the geometric difference caused by the anatomical enhancement in the MRCPs. For internal exposures of electrons, there were significant differences, the maximum of which reached a factor of ∼73 000. This was attributed not only to the geometric difference but also to the target mass difference caused by the different luminal content mass and organ shape.


Assuntos
Proteção Radiológica , Telas Cirúrgicas , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Doses de Radiação , Proteção Radiológica/métodos , Radiometria/métodos
6.
J Radiol Prot ; 41(2)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401263

RESUMO

In 2016, the International Commission on Radiological Protection (ICRP) launched Task Group 103 (TG 103) for the explicit purpose of developing a new generation of adult and pediatric reference computational phantoms, named 'mesh-type reference computational phantoms (MRCPs)', that can overcome the limitations of voxel-type reference computational phantoms (VRCPs) of ICRPPublications 110and143due to their finite voxel resolutions and the nature of voxel geometry. After completing the development of the adult MRCPs, TG 103 has started the development of pediatric MRCPs comprising 10 phantoms (male and female versions of the reference newborn, 1-year-old, 5-year-old, 10-year-old, and 15-year-old). As part of the TG 103 project, within the present study, the skeletal systems, one of the most important and complex organ systems of the body, were developed for each phantom age and sex. The developed skeletal systems, while closely preserving the original bone topology of the pediatric VRCPs, present substantial improvements in the anatomy of complex and/or small bones. In order to investigate the dosimetric impact of the developed skeletons, the average absorbed doses and the specific absorbed fractions for radiosensitive skeletal tissues (i.e. active marrow and bone endosteum) were computed for some selected external and internal exposure cases, which were then compared with those calculated with the skeletons of pediatric VRCPs. The comparison result showed that the dose values of the pediatric MRCPs were generally similar to those of the pediatric VRCPs for highly penetrating radiations (e.g. photons >200 keV); however, for weakly penetrating radiations (e.g. photons ⩽200 keV and electrons), significant differences up to a factor of 140 were observed.


Assuntos
Proteção Radiológica , Telas Cirúrgicas , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Doses de Radiação , Radiometria
7.
J Radiol Prot ; 41(2)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33882468

RESUMO

The International Commission on Radiological Protection (ICRP) recently reduced the dose limit for the eye lens for occupational exposure from 150 mSv yr-1to 20 mSv yr-1, as averaged over defined periods of five years, with no annual dose in a single year exceeding 50 mSv, emphasizing the importance of the accurate estimation of lens dose. In the present study, for more accurate lens dosimetry, detailed eye models were developed for children and adolescents (newborns and 1, 5, 10, and 15 year olds), which were then incorporated into the pediatric mesh-type reference computational phantoms (MRCPs) and used to calculate lens dose coefficients (DCs) for photon and electron exposures. Finally, the calculated values were compared with those calculated with the adult MRCPs in order to determine the age dependence of the lens DCs. For photon exposures, the lens DCs of the pediatric MRCPs showed some sizable differences from those of the adult MRCPs at very low energies (10 and 15 keV), but the differences were all less than 35%, except for the posterior-anterior irradiation geometry, for which the lens dose is not of primary concern. For electron exposures, much larger differences were found. For the anterior-posterior (AP) and isotropic irradiation geometries, the largest differences between the lens DCs of the pediatric and adult phantoms were found in the energy range of 0.6-1 MeV, where the newborn lens DCs were larger by up to a factor of ∼5 than the adult. The lens DCs of the present study, which were calculated for the radiosensitive region of the lens, also were compared with those for the entire lens in the AP irradiation geometry. Our results showed that the DCs of the entire lens were similar to those of the radiosensitive region for 0.02-2 MeV photons and >2 MeV electrons, but that for the other energy ranges, significant differences were noticeable, i.e. 10%-40% for photons and up to a factor of ∼5 for electrons.


Assuntos
Cristalino , Radiometria , Adolescente , Adulto , Criança , Humanos , Recém-Nascido , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Doses de Radiação
8.
J Radiol Prot ; 41(3)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34082408

RESUMO

Very recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) completed the development of the paediatric mesh-type reference computational phantoms (MRCPs) comprising ten phantoms (newborn, one year-old, five year-old, ten year-old, and fifteen year-old males and females). The paediatric MRCPs address the limitations of ICRPPublication 143's paediatric reference computational phantoms, which are in voxel format, stemming from the nature of the voxel geometry and the limited voxel resolutions. The paediatric MRCPs were constructed by converting the voxel-type reference phantoms to a high-quality mesh format with substantial enhancements in the detailed anatomy of the small and complex organs and tissues (e.g. bones, lymphatic nodes, and extra-thoracic region). Besides, the paediatric MRCPs were developed in consideration of the intra-organ blood contents and by modelling the micron-thick target and source regions of the skin, lens, urinary bladder, alimentary tract organs, and respiratory tract organs prescribed by the ICRP. For external idealised exposures, the paediatric MRCPs provide very similar effective dose coefficients (DCEs) to those from the ICRP-143 phantoms but significantly different values for weakly penetrating radiations (e.g. the difference of ∼20 000 times for 10 keV electron beams). This paper introduces the developed paediatric MRCPs with a brief explanation of the construction process. Then, it discusses their computational performance in Geant4, PHITS, and MCNP6 in terms of memory usage and computation speed and their impact on dose calculations by comparing their calculated values of DCEs for external exposures with those of the voxel-type reference phantoms.


Assuntos
Proteção Radiológica , Telas Cirúrgicas , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação
9.
J Ultrasound Med ; 39(12): 2427-2438, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32525261

RESUMO

OBJECTIVES: The purpose of this study was to demonstrate the clinical feasibility of an integrated reference phantom method for quantitative ultrasound by creating an ultrasound-derived fat fraction (UDFF) tool. This tool was evaluated with respect to its diagnostic performance as a biomarker for assessing histologic hepatic steatosis and its agreement with the magnetic resonance imaging (MRI) proton density fat fraction (PDFF). METHODS: Adults (n = 101) with known or suspected nonalcoholic fatty liver disease consented to participate in this prospective cross-sectional study. All patients underwent MRI-PDFF and ultrasound scans, whereas 90 underwent liver biopsy. A linear least-squares analysis used the attenuation coefficient and backscatter coefficient to create the UDFF model for predicting MRI-PDFF. RESULTS: The area under the receiver operating characteristic curve values were 0.94 (95% confidence interval [CI], 0.85-0.98) for histologic steatosis grade 0 (n = 6) versus 1 or higher (n = 84), 0.88 (95% CI, 0.8-0.94) for grade 1 or lower (n = 45) versus 2 or higher (n = 45), and 0.83 (95% CI, 0.73-0.9) for grade 2 or lower (n = 78) versus 3 (n = 12). The Pearson correlation coefficient between UDFF and PDFF was ρ = 0.87 with 95% limits of agreement of ±8.5%. Additionally, the diagnosis of steatosis, defined as MRI-PDFF higher than 5% and 10%, had area under the receiver operating characteristic curve values of 0.97 (95% CI, 0.93-0.99) and 0.95 (95% CI, 0.9-0.98), respectively. The body mass index was not correlated with either UDFF or PDFF. CONCLUSIONS: An on-system, integrated UDFF tool provides a simple, noninvasive, accessible, low-cost, and commercially viable clinical tool for quantifying the hepatic fat fraction with a high degree of agreement with histologic biopsy or the MRI-PDFF biomarker.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Estudos Transversais , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Estudos Prospectivos , Ultrassonografia
10.
Radiat Environ Biophys ; 58(4): 477-492, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31489486

RESUMO

The system of protection established by the International Commission on Radiological Protection (ICRP) provides a robust framework for ionizing radiation exposure justification, optimization, and dose limitation. The system is built upon fundamental concepts of a reference person, defined in ICRP Publication 89, and the radiation protection quantity effective dose, defined in ICRP Publication 103. For external exposures to radionuclide-contaminated soil, values of the organ dose rate coefficient (Gy/s per Bq/m2) and effective dose rate coefficient (Sv/s per Bq/m2) have been computed by several authors and national laboratories using ICRP-compliant reference phantoms-both stylized and voxelized. These coefficients are of great value in post-accident exposure assessments as seen in Japan following the 2011 Fukushima Daiichi nuclear power station disaster. Questions arise, however, among the general public regarding the accuracy of organ and effective dose estimates based upon reference phantom methodologies, especially for those individuals with height and/or total body mass that differ modestly or even substantially from the nearest age-matched reference person. In this pilot study, this issue is explored through use of the extended 351-member UF/NCI hybrid phantom library in which values of organ and detriment-weighted dose rate coefficients are computed for sex/height/mass-specific phantoms, and systematically compared to their values of the effective dose rate coefficient computed using corresponding reference phantoms. Results are given for monoenergetic photons, and then for some 33 different radionuclides, with all dose rate coefficient data provided in a series of electronic annexes. For environmentally relevant radionuclides such as 89Sr, 90Sr, 137Cs, and 131I, percent differences between the detriment-weighted dose rate coefficient computed using non-reference and the effective dose rate coefficient computed using reference phantoms vary only ± 5% for young children approximated by the reference 1-year-old phantom. With increased body size and age, the range of percent differences in these two quantities increases to + 7% to - 14% for the reference 5-year-old, to + 10% to - 27% for the reference 10-year-old, to + 33% to - 31% for the reference 15-year-old, and to + 15% to - 40% for male and female adults.


Assuntos
Exposição à Radiação/estatística & dados numéricos , Poluentes Radioativos do Solo/análise , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Japão , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Proteção Radiológica/métodos , Radioisótopos , Medição de Risco , Adulto Jovem
11.
Ultrason Imaging ; 39(3): 151-171, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28425388

RESUMO

Ultrasonic attenuation is one of the primary parameters of interest in Quantitative Ultrasound (QUS). Non-invasive monitoring of tissue attenuation can provide valuable diagnostic and prognostic information to the physician. The Reference Phantom Method (RPM) was introduced as a way of mitigating some of the system-related effects and biases to facilitate clinical QUS applications. In this paper, under the assumption of diffuse scattering, a probabilistic model of the backscattered signal spectrum is used to derive a theoretical lower bound on the estimation variance of the attenuation coefficient using the Spectral-Difference RPM. The theoretical lower bound is compared to simulated and experimental attenuation estimation statistics in tissue-mimicking (TM) phantoms. Estimation standard deviation (STD) of the sample attenuation in a region of interest (ROI) of the TM phantom is measured for various combinations of processing parameters, including Radio-Frequency (RF) data block length (i.e., window length) from 3 to 17 mm, RF data block width from 10 to 100 A-lines, and number of RF data blocks per attenuation estimation ROI from 3 to 10. In addition to the Spectral-Difference RPM, local attenuation estimation for simulated and experimental data sets was also performed using a modified implementation of the Spectral Fit Method (SFM). Estimation statistics of the SFM are compared to theoretical variance predictions from the literature.1 Measured STD curves are observed to lie above the theoretical lower bound curves, thus experimentally verifying the validity of the derived bounds. This theoretical framework benefits tissue characterization efforts by isolating processing parameter ranges that could provide required precision levels in estimation of the ultrasonic attenuation coefficient using Spectral Difference methods.


Assuntos
Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Ultrassonografia/estatística & dados numéricos
12.
Front Neurosci ; 15: 706785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483827

RESUMO

Magnetoencephalography (MEG) can non-invasively measure the electromagnetic activity of the brain. A new type of MEG, on-scalp MEG, has attracted the attention of researchers recently. Compared to the conventional SQUID-MEG, on-scalp MEG constructed with optically pumped magnetometers is wearable and has a high signal-to-noise ratio. While the co-registration between MEG and magnetic resonance imaging (MRI) significantly influences the source localization accuracy, co-registration error requires assessment, and quantification. Recent studies have evaluated the co-registration error of on-scalp MEG mainly based on the surface fit error or the repeatability error of different measurements, which do not reflect the true co-registration error. In this study, a three-dimensional-printed reference phantom was constructed to provide the ground truth of MEG sensor locations and orientations relative to MRI. The co-registration performances of commonly used three devices-electromagnetic digitization system, structured-light scanner, and laser scanner-were compared and quantified by the indices of final co-registration errors in the reference phantom and human experiments. Furthermore, the influence of the co-registration error on the performance of source localization was analyzed via simulations. The laser scanner had the best co-registration accuracy (rotation error of 0.23° and translation error of 0.76 mm based on the phantom experiment), whereas the structured-light scanner had the best cost performance. The results of this study provide recommendations and precautions for researchers regarding selecting and using an appropriate device for the co-registration of on-scalp MEG and MRI.

13.
Biomed Phys Eng Express ; 8(1)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34757950

RESUMO

3D imaging modalities such as computed tomography and digital tomosynthesis typically scan the patient from different angles with a lengthy mechanical movement of a single x-ray tube. Therefore, millions of 3D scans per year require expensive mechanisms to support a heavy x-ray source and have to compensate for machine vibrations and patient movements. However, recent developments in cold-cathode field emission technology allow the creation of compact, stationary arrays of emitters. Adaptix Ltd has developed a novel, low-cost, square array of such emitters and demonstrated 3D digital tomosynthesis of human extremities and small animals. The use of cold-cathode field emitters also makes the system compact and lightweight. This paper presents Monte Carlo simulations of a concept upgrade of the Adaptix system from the current 60 kVp to 90 kVp and 120 kVp which are better suited for chest imaging. Between 90 kVp and 120 kVp, 3D image quality appears insensitive to voltage and at 90 kVp the photon yield is reduced by 40%-50% while effective dose declines by 14%. A square array of emitters can adequately illuminate a subject for tomosynthesis from a shorter source-to-image distance, thereby reducing the required input power, and offsetting the 28%-50% more input power that is required for operation at 90 kVp. This modelling suggests that lightweight, stationary cold-cathode x-ray source arrays could be used for chest tomosynthesis at a lower voltage, with less dose and without sacrificing image quality. This will reduce weight, size and cost, enabling 3D imaging to be brought to the bedside.


Assuntos
Imageamento Tridimensional , Tomografia Computadorizada por Raios X , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Raios X
14.
Ultrasound Med Biol ; 47(8): 2388-2403, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34059374

RESUMO

Quantitative ultrasound has a great potential for the non-destructive evaluation of tissue engineered constructs, where the local attenuation and the integrated backscatter coefficient (IBC) can be used for monitoring the development of biological processes. The local determination of both parameters can be achieved using the reference phantom method (RPM). However, its accuracy can be affected when evaluating constructs of evolving sound speed, attenuation and thickness, for example, when evaluating biodegradable hydrogels developing neocartilage. To assess the feasibility of using the RPM under such dynamic conditions while employing a 50-MHz transducer, we conducted a series of experiments on 3-mm-thick acellular hydrogels laden with microspheres. The ultrasonic evaluation procedure used was validated by detecting and compensating for large attenuation variations occurring in the construct, up to 20-fold with respect to the reference phantom, with estimations errors below 1%. We found that sound speed mismatch does not affect the local attenuation estimation, but causes a strong diffraction effect by reducing the backscatter intensity. Such intensity reduction was compensated by determining the IBC percentage change (IBCΔ) as function of sound speed mismatch with respect to the reference phantom (ΔSS), with the equation IBCΔ = (0.63 ± 0.07) ΔSS + (8.54 ± 0.76) 10-3 ΔSS2. The investigated ΔSS interval was up to 120 m/s and using two different concentrations of microspheres, with estimation errors below 7% relative to the construct's actual IBC. Finally, we found that the spectral difference method is sufficient to measure within a few millimetres in depth mismatch, and when combining with sound speed mismatch, we found negligible additional effects. These results pave the way for the use of a generic reference phantom for the evaluation of thin dynamic constructs, thus simplifying the need for using different phantoms depending on the construct's properties.


Assuntos
Imagens de Fantasmas , Ultrassonografia/métodos , Estudos de Viabilidade , Hidrogéis , Microesferas
15.
Med Phys ; 47(10): 5357-5365, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32790906

RESUMO

PURPOSE: To investigate the necessity of patient-specific dosimetry calculations using individualized models for hyperthyroid patients treated with radioactive iodine (RAI). This treatment modality was considered to be safe and effective; however, a recent publication indicated associations between greater organ-absorbed doses of RAI and risk of cancer death. METHODS: Ten patient-specific models which ranged in size were used (from 152.5 to 184 cm in height and from 44 to 88 kg in mass). The time-integrated activity coefficients (TIAC) were evaluated from the 2017 Leggett's model assuming 24 h radioactive iodine uptakes (RAIU) of 30, 50, 70, and 90% and two intake routes for normal uptake (ingestion and injection). A set of 131 I S factors (mGy MBq-1  h-1 ) from the patient-specific phantoms including 12 source regions were provided in this study. These S factors were used together with the new TIACs to present dose coefficients. RESULTS: The MC-based patient-specific S factors were compared with the ICRP standard data and the variation ranges (%) of (-65, +210) and (-57, +193) were reported for self and cross S factors, respectively. However, for self S factors, those intervals were reduced to (-8.3, +4.6) when mass correction was applied. Moreover, variations on organ dose coefficients were evaluated and the thyroid contributions were also assessed for 24 h RAIU of 30, 50, 70, and 90%. Considering that the thyroid contribution to adjacent normal organs is high and the variations on cross dose coefficients are also considerable, variations (%) on normal organ doses were estimated to be up to (-63, +132), with a planned thyroid absorbed dose of 150 Gy. CONCLUSION: Given the large variations on organ doses, the standard data are not an appropriate substitute for patient-specific data. Particularly, when accurate patient-specific dose estimation is a serious concern in RAI treatment (RAIT) for nuclear medicine practitioners. However, acquiring computed tomography (CT) images for patient-specific modeling will impose additional radiation dose to patients. It was concluded that CT imaging limited to the region from skull base to mid thorax (i.e., for organs with RAIT doses of >~50 mGy with a dose of 150 Gy prescribed to the thyroid) may be suggested and is clinically relevant because the normal organ dose increments are not greater than 10%.


Assuntos
Hipertireoidismo , Neoplasias da Glândula Tireoide , Humanos , Hipertireoidismo/radioterapia , Radioisótopos do Iodo/uso terapêutico , Modelos Anatômicos , Imagens de Fantasmas , Doses de Radiação , Radiometria
16.
Nucl Eng Technol ; 52(7): 1545-1556, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38939801

RESUMO

To overcome inherent limitations of the Voxel-type Reference Computational Phantoms (VRCPs) due to the limited voxel resolutions and the nature of voxel geometry, the International Commission on Radiological Protection (ICRP) has developed the adult male and female Mesh-type Reference Computational Phantoms (MRCPs). We previously used the MRCPs to calculate a complete set of dose coefficients (DCs) for idealized external exposures of photons and electrons (Yeom et al. NET in press). In the present study, we extended the previous study to include additional radiation particles (neutrons, protons, and helium ions) into the DC library by conducing Monte Carlo radiation transport simulations with the Geant4 code. The MRPC-based DCs were compared with the existing reference DCs of ICRP Publication 116 which are based on the ICRP VRCPs to investigate impact of the new mesh-type reference phantoms on the DC values. We found that the MRCPs generally provide DCs of organ/tissue doses and effective doses similar to those from the VRCPs for penetrating radiations (uncharged particles), whereas significant DC differences were observed for weakly penetrating radiations (charged particles) mainly due to the improved representation of the detailed anatomical structures in the MRCPs over the VRCPs.

17.
J Med Ultrason (2001) ; 46(4): 367-375, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30955147

RESUMO

PURPOSE: Compressed sensing (CS) is the theory of the recovery of signals that are sampled below the Nyquist sampling rate. We propose a spectral analysis framework for CS data that does not require full reconstruction for extracting frequency characteristics of signals by an appropriate basis matrix. METHODS: The coefficients of a basis matrix already contain the spectral information for CS data, and the proposed framework directly utilizes them without completely restoring original data. We apply three basis matrices, i.e., DCT, DFT, and DWT, for sampling and reconstructing processes, subsequently estimating the attenuation coefficients to validate the proposed method. The estimation accuracy and precision, as well as the execution time, are compared using the reference phantom method (RPM). RESULTS: The experiment results show the effective extraction of spectral information from CS signals by the proposed framework, and the DCT basis matrix provides the most accurate results while minimizing estimation variances. The execution time is also reduced compared with that of the traditional approach, which completely reconstructs the original data. CONCLUSION: The proposed method provides accurate spectral analysis without full reconstruction. Since it effectively utilizes the data storage and reduces the processing time, it could be applied to small and portable ultrasound systems using the CS technique.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Algoritmos , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes
18.
Ultrasound Med Biol ; 45(5): 1081-1093, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30685076

RESUMO

Attenuation coefficient estimation has the potential to be a useful tool for placental tissue characterization. A current challenge is the presence of inhomogeneities in biological tissue that result in a large variance in the attenuation coefficient estimate (ACE), restricting its clinical utility. In this work, we propose a new Attenuation Estimation Region Of Interest (AEROI) selection method for computing the ACE based on the (i) envelope signal-to-noise ratio deviation and (ii) coefficient of variation of the transmit pulse bandwidth. The method was first validated on a tissue-mimicking phantom, for which an 18%-21% reduction in the standard deviation of ACE and a 14%-24% reduction in the ACE error, expressed as a percentage of reported ACE, were obtained. A study on 59 post-delivery clinically normal placentas was then performed. The proposed AEROI selection method reduced the intra-subject standard deviation of ACE from 0.72 to 0.39 dB/cm/MHz. The measured ACE of 59 placentas was 0.77 ± 0.37 dB/cm/MHz, which establishes a baseline for future studies on placental tissue characterization.


Assuntos
Placenta/anatomia & histologia , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Placenta/diagnóstico por imagem , Gravidez , Valores de Referência , Adulto Jovem
19.
Ultrasound Med Biol ; 44(11): 2358-2370, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30093341

RESUMO

Use of the reference phantom method for computing acoustic attenuation and backscatter is widespread. However, clinical application of these methods has been limited by the need to acquire reference phantom data. We determined that the data acquired from 11 transducers of the same model and five clinical ultrasound systems of the same model produce equivalent estimates of reference phantom power spectra. We describe that the contribution to power spectral density variance among systems and transducers equals that from speckle variance with 59 uncorrelated echo signals. Thus, when the number of uncorrelated lines of data is small, speckle variance will dominate the power spectral density estimate variance introduced by different systems and transducers. These results suggest that, at least for this particular transducer and imaging system combination, one set of reference phantom calibration data is highly representative of the average among equivalent transducers and systems that are in good working order.


Assuntos
Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Transdutores , Ultrassonografia/métodos , Acústica , Reprodutibilidade dos Testes , Ultrassom
20.
Ultrasound Med Biol ; 44(7): 1493-1503, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29661482

RESUMO

Imaging biomarkers based on quantitative ultrasound can offer valuable information about properties that inform tissue function and behavior such as microstructural organization (e.g., collagen alignment) and viscoelasticity (i.e., compliance). For example, the cervix feels softer as its microstructure remodels during pregnancy, an increase in compliance that can be objectively quantified with shear wave speed and therefore shear wave speed estimation is a potential biomarker of cervical remodeling. Other proposed biomarkers include parameters derived from the backscattered echo signal, such as attenuation and backscattered power loss, because such parameters can provide insight into tissue microstructural alignment and organization. Of these, attenuation values for the pregnant cervix have been reported, but large estimate variance reduces their clinical value. That said, parameter estimates based on the backscattered echo signal may be incorrect if assumptions they rely on, such as tissue isotropy and homogeneity, are violated. For that reason, we explored backscatter and attenuation parameters as potential biomarkers of cervical remodeling via careful investigation of the assumptions of isotropy and homogeneity in cervical tissue. Specifically, we estimated the angle- and spatial-dependence of parameters of backscattered power and acoustic attenuation in the ex vivo human cervix, using the reference phantom method and electronic steering of the ultrasound beam. We found that estimates are anisotropic and spatially heterogeneous, presumably because the tissue itself is anisotropic and heterogeneous. We conclude that appropriate interpretation of imaging biomarkers of cervical remodeling must account for tissue anisotropy and heterogeneity.


Assuntos
Colo do Útero/diagnóstico por imagem , Imagens de Fantasmas , Ultrassonografia/métodos , Anisotropia , Estudos de Avaliação como Assunto , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA