Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(50): e2307884120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055735

RESUMO

Older adults show declines in spatial memory, although the extent of these alterations is not uniform across the healthy older population. Here, we investigate the stability of neural representations for the same and different spatial environments in a sample of younger and older adults using high-resolution functional MRI of the medial temporal lobes. Older adults showed, on average, lower neural pattern similarity for retrieving the same environment and more variable neural patterns compared to young adults. We also found a positive association between spatial distance discrimination and the distinctiveness of neural patterns between environments. Our analyses suggested that one source for this association was the extent of informational connectivity to CA1 from other subfields, which was dependent on age, while another source was the fidelity of signals within CA1 itself, which was independent of age. Together, our findings suggest both age-dependent and independent neural contributions to spatial memory performance.


Assuntos
Hipocampo , Aprendizagem Espacial , Adulto Jovem , Humanos , Idoso , Hipocampo/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Memória Espacial
2.
J Neurosci ; 44(30)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38871460

RESUMO

It has been suggested that, prior to a saccade, visual neurons predictively respond to stimuli that will fall in their receptive fields after completion of the saccade. This saccadic remapping process is thought to compensate for the shift of the visual world across the retina caused by eye movements. To map the timing of this predictive process in the brain, we recorded neural activity using electroencephalography during a saccade task. Human participants (male and female) made saccades between two fixation points while covertly attending to oriented gratings briefly presented at various locations on the screen. Data recorded during trials in which participants maintained fixation were used to train classifiers on stimuli in different positions. Subsequently, data collected during saccade trials were used to test for the presence of remapped stimulus information at the post-saccadic retinotopic location in the peri-saccadic period, providing unique insight into when remapped information becomes available. We found that the stimulus could be decoded at the remapped location ∼180 ms post-stimulus onset, but only when the stimulus was presented 100-200 ms before saccade onset. Within this range, we found that the timing of remapping was dictated by stimulus onset rather than saccade onset. We conclude that presenting the stimulus immediately before the saccade allows for optimal integration of the corollary discharge signal with the incoming peripheral visual information, resulting in a remapping of activation to the relevant post-saccadic retinotopic neurons.


Assuntos
Eletroencefalografia , Estimulação Luminosa , Movimentos Sacádicos , Humanos , Movimentos Sacádicos/fisiologia , Masculino , Feminino , Adulto , Estimulação Luminosa/métodos , Adulto Jovem , Percepção Espacial/fisiologia , Fixação Ocular/fisiologia
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642106

RESUMO

The spatial coding of tactile information is functionally essential for touch-based shape perception and motor control. However, the spatiotemporal dynamics of how tactile information is remapped from the somatotopic reference frame in the primary somatosensory cortex to the spatiotopic reference frame remains unclear. This study investigated how hand position in space or posture influences cortical somatosensory processing. Twenty-two healthy subjects received electrical stimulation to the right thumb (D1) or little finger (D5) in three position conditions: palm down on right side of the body (baseline), hand crossing the body midline (effect of position), and palm up (effect of posture). Somatosensory-evoked potentials (SEPs) were recorded using electroencephalography. One early-, two mid-, and two late-latency neurophysiological components were identified for both fingers: P50, P1, N125, P200, and N250. D1 and D5 showed different cortical activation patterns: compared with baseline, the crossing condition showed significant clustering at P1 for D1, and at P50 and N125 for D5; the change in posture showed a significant cluster at N125 for D5. Clusters predominated at centro-parietal electrodes. These results suggest that tactile remapping of fingers after electrical stimulation occurs around 100-125 ms in the parietal cortex.


Assuntos
Percepção do Tato , Tato , Humanos , Tato/fisiologia , Dedos/fisiologia , Percepção do Tato/fisiologia , Mãos/fisiologia , Eletroencefalografia , Córtex Somatossensorial
4.
J Neurosci ; 42(26): 5268-5280, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35641190

RESUMO

Hippocampal place cells form a map of the environment of an animal. Changes in the hippocampal map can be brought about in a number of ways, including changes to the environment, task, internal state of the subject, and the passage of time. These changes in the hippocampal map have been called remapping. In this study, we examine remapping during repeated exposure to the same environment. Different animals can have different remapping responses to the same changes. This variability across animals in remapping behavior is not well understood. In this work, we analyzed electrophysiological recordings from the CA3 region of the hippocampus performed by Alme et al. (2014), in which five male rats were exposed to 11 different environments, including a variety of repetitions of those environments. To compare the hippocampal maps between two experiences, we computed average rate map correlation coefficients. We found changes in the hippocampal maps between different sessions in the same environment. These changes consisted of partial remapping, a form of remapping in which some place cells maintain their place fields, whereas other place cells remap their place fields. Each animal exhibited partial remapping differently. We discovered that the heterogeneity in hippocampal representational changes across animals is structured; individual animals had consistently different levels of partial remapping across a range of independent comparisons. Our findings highlight that partial hippocampal remapping between repeated environments depends on animal-specific factors.SIGNIFICANCE STATEMENT Context identification is a difficult problem. Animals are not provided with objective context identity labels, so they must infer which experiences come from which contexts. Different animals may have different strategies for performing this inference. We find that different animals have stereotypically different extents of partial hippocampal remapping, a neural correlate of subjective assessment of context identity.


Assuntos
Hipocampo , Células de Lugar , Animais , Região CA1 Hipocampal , Hipocampo/fisiologia , Masculino , Ratos , Percepção Espacial
5.
J Neurophysiol ; 129(3): 733-748, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36812151

RESUMO

Motor costs influence movement selection. These costs could change when movements are adapted in response to errors. When the motor system attributes the encountered errors to an external cause, appropriate movement selection requires an update of the movement goal, which prompts the selection of a different control policy. However, when errors are attributed to an internal cause, the initially selected control policy could remain unchanged, but the internal forward model of the body needs to be updated, resulting in an online correction of the movement. We hypothesized that external attribution of errors leads to the selection of a different control policy, and thus to a change in the expected cost of movements. This should also affect subsequent motor decisions. Conversely, internal attribution of errors may (initially) only evoke online corrections, and thus is expected to leave the motor decision process unchanged. We tested this hypothesis using a saccadic adaptation paradigm, designed to change the relative motor cost of two targets. Motor decisions were measured using a target selection task between the two saccadic targets before and after adaptation. Adaptation was induced by either abrupt or gradual perturbation schedules, which are thought to induce more external or internal attribution of errors, respectively. By taking individual variability into account, our results show that saccadic decisions shift toward the least costly target after adaptation, but only when the perturbation is abruptly, and not gradually, introduced. We suggest that credit assignment of errors not only influences motor adaptation but also subsequent motor decisions.NEW & NOTEWORTHY Decisions between potential motor actions are influenced by their costs, but costs change when movements are adapted. Using a saccadic target selection task, we show that target preference shifts after abrupt, but not after gradual adaptation. We suggest that this difference emerges because abrupt adaptation results in target remapping, and thus directly influences cost calculations, whereas gradual adaptation is mainly driven by corrections to a forward model that is not involved in cost calculations.


Assuntos
Adaptação Fisiológica , Desempenho Psicomotor , Desempenho Psicomotor/fisiologia , Adaptação Fisiológica/fisiologia , Movimento/fisiologia , Movimentos Sacádicos , Viés
6.
Hippocampus ; 33(7): 830-843, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36789678

RESUMO

The hippocampus is critical for contextual memory and has recently been implicated in various kinds of social memory. Traditionally, studies of hippocampal context coding have manipulated elements of the background environment, such as the shape and color of the apparatus. These manipulations produce large shifts in the spatial firing patterns, a phenomenon known as remapping. These findings suggest that the hippocampus encodes and differentiates contexts by generating unique spatial firing patterns for each environment a subject encounters. However, we do not know whether the hippocampus encodes social contexts defined by the presence of particular conspecifics. We examined this by exposing rats to a series of manipulations of the social context, including the presence of familiar male, unfamiliar male and female conspecifics, in order to determine whether remapping is a plausible mechanism for encoding socially-defined contexts. Because the dorsal and ventral regions of the hippocampus are thought to play different roles in spatial and social cognition, we recorded neurons in both regions. Surprisingly, we found little evidence of remapping in response to manipulation of the social context in either the dorsal or ventral hippocampus, although we saw typical remapping in response to changing the background color. This result suggests that remapping is not the primary mechanism for encoding different social contexts. However, we found that a subset of hippocampal neurons fired selectively near the cages that contained the conspecifics, and these responses were most prevalent in the ventral hippocampus. We also found a striking increase in the spatial information content of ventral hippocampal firing patterns. These results indicate that the ventral hippocampus is sensitive to changes in the social context and neurons that respond selectively near the conspecific cages could play an important, if not fully understood role in encoding the conjunction of conspecifics, their location and the environment.


Assuntos
Hipocampo , Neurônios , Ratos , Masculino , Feminino , Animais , Hipocampo/fisiologia , Neurônios/fisiologia , Meio Social
7.
Hippocampus ; 33(5): 600-615, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060325

RESUMO

Investigations into how individual neurons encode behavioral variables of interest have revealed specific representations in single neurons, such as place and object cells, as well as a wide range of cells with conjunctive encodings or mixed selectivity. However, as most experiments examine neural activity within individual tasks, it is currently unclear if and how neural representations change across different task contexts. Within this discussion, the medial temporal lobe is particularly salient, as it is known to be important for multiple behaviors including spatial navigation and memory, however the relationship between these functions is currently unclear. Here, to investigate how representations in single neurons vary across different task contexts in the medial temporal lobe, we collected and analyzed single-neuron activity from human participants as they completed a paired-task session consisting of a passive-viewing visual working memory and a spatial navigation and memory task. Five patients contributed 22 paired-task sessions, which were spike sorted together to allow for the same putative single neurons to be compared between the different tasks. Within each task, we replicated concept-related activations in the working memory task, as well as target-location and serial-position responsive cells in the navigation task. When comparing neuronal activity between tasks, we first established that a significant number of neurons maintained the same kind of representation, responding to stimuli presentations across tasks. Further, we found cells that changed the nature of their representation across tasks, including a significant number of cells that were stimulus responsive in the working memory task that responded to serial position in the spatial task. Overall, our results support a flexible encoding of multiple, distinct aspects of different tasks by single neurons in the human medial temporal lobe, whereby some individual neurons change the nature of their feature coding between task contexts.


Assuntos
Navegação Espacial , Lobo Temporal , Humanos , Lobo Temporal/fisiologia , Memória de Curto Prazo , Neurônios/fisiologia , Navegação Espacial/fisiologia
8.
Europace ; 25(6)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335976

RESUMO

AIMS: Pulsed field ablation (PFA) has emerged as a promising alternative to thermal ablation for treatment of atrial fibrillation (AF). We report performance and safety using the CENTAURI™ System (Galvanize Therapeutics) with three commercial, focal ablation catheters. METHODS AND RESULTS: ECLIPSE AF (NCT04523545) was a prospective, single-arm, multi-centre study evaluating safety and acute and chronic pulmonary vein isolation (PVI) durability using the CENTAURI System in conjunction with the TactiCath SE, StablePoint, and ThermoCool ST ablation catheters. Patients with paroxysmal or persistent AF were treated at two centres. Patients were analysed in five cohorts based upon ablation settings, catheter, and mapping system. Pulsed field ablation was performed in 82 patients (74% male, 42 paroxysmal AF). Pulmonary vein isolation was achieved in 100% of pulmonary veins (322/322) with first-pass isolation in 92.2% (297/322). There were four serious adverse events of interest (three vascular access complications and one lacunar stroke). Eighty patients (98%) underwent invasive remapping. Pulsed field ablation development Cohorts 1 and 2 showed a per-patient isolation rate of 38% and 26% and a per-PV isolation rate of 47% and 53%, respectively. Optimized PFA Cohorts 3-5 showed a per-patient isolation rate of 60%, 73%, and 81% and a per-PV isolation rate of 84%, 90%, and 92%, respectively. CONCLUSION: ECLIPSE AF demonstrated that optimized PFA using the CENTAURI System with three commercial, contact force-sensing, solid-tip focal ablation catheters resulted in transmural lesion formation and high proportion of durable PVI with a favourable safety profile, thus providing a viable treatment option for AF that integrates with contemporary focal ablation workflows.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Masculino , Feminino , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Fibrilação Atrial/etiologia , Estudos Prospectivos , Adesões Focais , Resultado do Tratamento , Catéteres , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Veias Pulmonares/cirurgia , Recidiva
9.
Proc Natl Acad Sci U S A ; 117(14): 8203-8211, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209663

RESUMO

Most people easily learn to recognize new faces and places, and with more extensive practice they can become experts at visual tasks as complex as radiological diagnosis and action video games. Such perceptual plasticity has been thoroughly studied in the context of training paradigms that require constant fixation. In contrast, when observers learn under more natural conditions, they make frequent saccadic eye movements. Here we show that such eye movements can play an important role in visual learning. Observers performed a task in which they executed a saccade while discriminating the motion of a cued visual stimulus. Additional stimuli, presented simultaneously with the cued one, permitted an assessment of the perceptual integration of information across visual space. Consistent with previous results on perisaccadic remapping [M. Szinte, D. Jonikaitis, M. Rolfs, P. Cavanagh, H. Deubel, J. Neurophysiol. 116, 1592-1602 (2016)], most observers preferentially integrated information from locations representing the presaccadic and postsaccadic retinal positions of the cue. With extensive training on the saccade task, these observers gradually acquired the ability to perform similar motion integration without making eye movements. Importantly, the newly acquired pattern of spatial integration was determined by the metrics of the saccades made during training. These results suggest that oculomotor influences on visual processing, long thought to subserve the function of perceptual stability, also play a role in visual plasticity.


Assuntos
Movimentos Sacádicos/fisiologia , Aprendizagem Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Sinais (Psicologia) , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 117(20): 11059-11067, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32354998

RESUMO

Can the primary visual cortex (V1), once wired up in development, change in adulthood? Although numerous studies have demonstrated topographic reorganization in adult V1 following the loss of bottom-up input, others have challenged such findings, offering alternative explanations. Here we use a noninvasive and reversible deprivation paradigm and converging neural and behavioral approaches to address these alternatives in the experimental test case of short-term topographic reorganization in adult human V1. Specifically, we patched one eye in typical adults, thereby depriving the cortical representation of the other eye's blind spot (BS), and immediately tested for topographic reorganization using functional magnetic resonance imaging and psychophysics. Strikingly, within just minutes of eye-patching, the BS representation in V1 began responding to stimuli presented outside of the BS, and these same stimuli were perceived as elongated toward the BS. Thus, we provide converging neural and behavioral evidence of rapid topographic reorganization in adult human V1, and the strongest evidence yet that visual deprivation produces bona fide cortical change.


Assuntos
Imageamento por Ressonância Magnética/métodos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiopatologia , Campos Visuais/fisiologia , Adulto , Mapeamento Encefálico , Olho , Feminino , Humanos , Plasticidade Neuronal , Adulto Jovem
11.
Cogn Process ; 24(2): 199-212, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36576704

RESUMO

Animals use sensory information and memory to build internal representations of space. It has been shown that such representations extend beyond the geometry of an environment and also encode rich sensory experiences usually referred to as context. In mammals, contextual inputs from sensory cortices appear to be converging on the hippocampus as a key area for spatial representations and memory. How metric and external sensory inputs (e.g., visual context) are combined into a coherent and stable place representation is not fully understood. Here, I review the evidence of attentional effects along the ventral visual pathway and in the medial temporal lobe and propose an attention-based model for the integration of visual context in spatial representations. I further suggest that attention-based retrieval of spatial memories supports a feedback mechanism that allows consolidation of old memories and new sensory experiences related to the same place, thereby contributing to the stability of spatial representations. The resulting model has the potential to generate new hypotheses to explain complex responses of spatial cells such as place cells in the hippocampus.


Assuntos
Hipocampo , Memória Espacial , Animais , Humanos , Hipocampo/fisiologia , Percepção Espacial/fisiologia , Mamíferos
12.
Proc Natl Acad Sci U S A ; 116(6): 2027-2032, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30655348

RESUMO

Humans move their eyes several times per second, yet we perceive the outside world as continuous despite the sudden disruptions created by each eye movement. To date, the mechanism that the brain employs to achieve visual continuity across eye movements remains unclear. While it has been proposed that the oculomotor system quickly updates and informs the visual system about the upcoming eye movement, behavioral studies investigating the time course of this updating suggest the involvement of a slow mechanism, estimated to take more than 500 ms to operate effectively. This is a surprisingly slow estimate, because both the visual system and the oculomotor system process information faster. If spatiotopic updating is indeed this slow, it cannot contribute to perceptual continuity, because it is outside the temporal regime of typical oculomotor behavior. Here, we argue that the behavioral paradigms that have been used previously are suboptimal to measure the speed of spatiotopic updating. In this study, we used a fast gaze-contingent paradigm, using high phi as a continuous stimulus across eye movements. We observed fast spatiotopic updating within 150 ms after stimulus onset. The results suggest the involvement of a fast updating mechanism that predictively influences visual perception after an eye movement. The temporal characteristics of this mechanism are compatible with the rate at which saccadic eye movements are typically observed in natural viewing.


Assuntos
Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Movimentos Oculares/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa , Fatores de Tempo , Adulto Jovem
13.
J Neurosci ; 40(47): 9088-9102, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33087476

RESUMO

Oscillatory α-band activity is commonly associated with spatial attention and multisensory prioritization. It has also been suggested to reflect the automatic transformation of tactile stimuli from a skin-based, somatotopic reference frame into an external one. Previous research has not convincingly separated these two possible roles of α-band activity. Previous experimental paradigms have used artificially long delays between tactile stimuli and behavioral responses to aid relating oscillatory activity to these different events. However, this strategy potentially blurs the temporal relationship of α-band activity relative to behavioral indicators of tactile-spatial transformations. Here, we assessed α-band modulation with massive univariate deconvolution, an analysis approach that disentangles brain signals overlapping in time and space. Thirty-one male and female human participants performed a delay-free, visual search task in which saccade behavior was unrestricted. A tactile cue to uncrossed or crossed hands was either informative or uninformative about visual target location. α-Band suppression following tactile stimulation was lateralized relative to the stimulated hand over central-parietal electrodes but relative to its external location over parieto-occipital electrodes. α-Band suppression reflected external touch location only after informative cues, suggesting that posterior α-band lateralization does not index automatic tactile transformation. Moreover, α-band suppression occurred at the time of, or after, the production of the saccades guided by tactile stimulation. These findings challenge the idea that α-band activity is directly involved in tactile-spatial transformation and suggest instead that it reflects delayed, supramodal processes related to attentional reorienting.SIGNIFICANCE STATEMENT Localizing a touch in space requires integrating somatosensory information about skin location and proprioceptive or visual information about posture. The automatic remapping between skin-based tactile information to a location in external space has been proposed to rely on the modulation of oscillatory brain activity in the α-band range, across the multiple cortical areas that are involved in tactile, multisensory, and spatial processing. We report two findings that are inconsistent with this view. First, α-band activity reflected the remapped stimulus location only when touch was task relevant. Second, α-band modulation occurred too late to account for spatially directed behavioral responses and, thus, only after remapping must have taken place. These characteristics contradict the idea that α-band directly reflects automatic tactile remapping processes.


Assuntos
Ritmo alfa/fisiologia , Orientação Espacial/fisiologia , Percepção Espacial/fisiologia , Percepção do Tato/fisiologia , Adolescente , Adulto , Sinais (Psicologia) , Eletrodos , Movimentos Oculares/fisiologia , Feminino , Mãos/inervação , Mãos/fisiologia , Humanos , Masculino , Lobo Occipital/fisiologia , Lobo Parietal/fisiologia , Estimulação Luminosa , Movimentos Sacádicos , Córtex Somatossensorial/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
14.
J Neurosci ; 40(43): 8329-8342, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958567

RESUMO

Hippocampal CA1 place cell spatial maps are known to alter their firing properties in response to contextual fear conditioning, a process called "remapping." In the present study, we use chronic calcium imaging to examine remapping during fear retrieval and extinction of an inhibitory avoidance task in mice of both sexes over an extended period of time and with thousands of neurons. We demonstrate that hippocampal ensembles encode space at a finer scale following fear memory acquisition. This effect is strongest near the shock grid. We also characterize the long-term effects of shock on place cell ensemble stability, demonstrating that shock delivery induces several days of high fear and low between-session place field stability, followed by a new, stable spatial representation that appears after fear extinction. Finally, we identify a novel group of CA1 neurons that robustly encode freeze behavior independently from spatial location. Thus, following fear acquisition, hippocampal CA1 place cells sharpen their spatial tuning and dynamically change spatial encoding stability throughout fear learning and extinction.SIGNIFICANCE STATEMENT The hippocampus contains place cells that encode an animal's location. This spatial code updates, or remaps, in response to environmental change. It is known that contextual fear can induce such remapping; in the present study, we use chronic calcium imaging to examine inhibitory avoidance-induced remapping over an extended period of time and with thousands of neurons and demonstrate that hippocampal ensembles encode space at a finer scale following electric shock, an effect which is enhanced by threat proximity. We also identify a novel group of freeze behavior-activated neurons. These results suggest that, more than merely shuffling their spatial code following threat exposure, place cells enhance their spatial coding with the possible benefit of improved threat localization.


Assuntos
Extinção Psicológica/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Animais , Aprendizagem da Esquiva , Comportamento Animal/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Sinalização do Cálcio , Feminino , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia
15.
Neuroimage ; 245: 118642, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34637901

RESUMO

Motor recovery following ischemic stroke is contingent on the ability of surviving brain networks to compensate for damaged tissue. In rodent models, sensory and motor cortical representations have been shown to remap onto intact tissue around the lesion site, but remapping to more distal sites (e.g. in the contralesional hemisphere) has also been observed. Resting state functional connectivity (FC) analysis has been employed to study compensatory network adaptations in humans, but mechanisms and time course of motor recovery are not well understood. Here, we examine longitudinal FC in 23 first-episode ischemic pontine stroke patients and utilize a graph matching approach to identify patterns of functional connectivity reorganization during recovery. We quantified functional reorganization between several intervals ranging from 1 week to 6 months following stroke, and demonstrated that the areas that undergo functional reorganization most frequently are in cerebellar/subcortical networks. Brain regions with more structural and functional connectome disruption due to the stroke also had more remapping over time. Finally, we show that functional reorganization is correlated with the extent of motor recovery in the early to late subacute phases, and furthermore, individuals with greater baseline motor impairment demonstrate more extensive early subacute functional reorganization (from one to two weeks post-stroke) and this reorganization correlates with better motor recovery at 6 months. Taken together, these results suggest that our graph matching approach can quantify recovery-relevant, whole-brain functional connectivity network reorganization after stroke.


Assuntos
Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiopatologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade
16.
Hippocampus ; 31(10): 1128-1136, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34314076

RESUMO

Grid cells in rodent medial entorhinal cortex are thought to play a key role for spatial navigation. When the animal is freely moving in an open arena the firing fields of each grid cell tend to form a highly regular, hexagonal lattice spanning the environment. However, firing rates vary from field to field and change under contextual modifications, whereas the field locations shift at most by a small amount under such "rate remapping." The observed differences in firing rate could reflect overall activity changes or changes in the detailed spike-train statistics. As these two alternatives imply distinct neural coding schemes, we investigated whether temporal firing patterns vary from field to field and whether they change under rate remapping. Focusing on short time scales, we found that the proportion of bursts compared to all discharge events is similar in all firing fields of a given grid cell and does not change under rate remapping. For each cell, mean firing rates with bursts are proportional to mean firing rates without bursts. However, this ratio varies across cells. Additionally, we looked at how rate remapping relates to entorhinal theta-frequency oscillations. Theta-phase coding was preserved despite firing-rate changes from rate remapping but we did not observe differences between the first and second half of the theta cycle, as had been reported for CA1. Our results indicate that both, the heterogeneity between firing fields and rate remapping, are not due to altered firing patterns on short time scales but reflect location-specific changes at the firing-rate level.


Assuntos
Células de Grade , Navegação Espacial , Potenciais de Ação , Animais , Córtex Entorrinal , Modelos Neurológicos
17.
Cogn Process ; 22(Suppl 1): 121-126, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34448968

RESUMO

Years ago, it was demonstrated (e.g., Rizzolatti et al. in Handbook of neuropsychology, Elsevier Science, Amsterdam, 2000) that the brain does not encode the space around us in a homogeneous way, but through neural circuits that map the space relative to the distance that objects of interest have from the body. In monkeys, relatively discrete neural systems, characterized by neurons with specific neurophysiological responses, seem to be dedicated either to represent the space that can be reached by the hand (near/peripersonal space) or to the distant space (far/extrapersonal space). It was also shown that the encoding of spaces has dynamic aspects because they can be remapped by the use of tools that trigger different actions (e.g., Iriki et al. 1998). In this latter case, the effect of the tool depends on the modulation of personal space, that is the space of our body. In this paper, I will review and discuss selected research, which demonstrated that also in humans: 1 spaces are encoded in a dynamic way; 2 encoding can be modulated by the use of tool that the system comes to consider as parts of the own body; 3 body representations are not fixed, but they are fragile and subject to change to the point that we can incorporate not only the tools necessary for action, but even limbs belonging to other people. What embodiment of tools and of alien limb tell us about body representations is then briefly discussed.


Assuntos
Espaço Pessoal , Percepção Espacial , Imagem Corporal , Encéfalo , Humanos , Desempenho Psicomotor
18.
J Neurosci ; 39(3): 445-455, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30478033

RESUMO

Locus coeruleus (LC) neurons, the source of hippocampal norepinephrine (NE), are activated by novelty and changes in environmental contingencies. Based on the role of monoamines in reconfiguring invertebrate networks, and data from mammalian systems, a network reset hypothesis for the effects of LC activation has been proposed. We used the cellular compartmental analysis of temporal FISH technique based on the cellular distribution of immediate early genes to examine the effect of LC activation and inactivation, on regional hippocampal maps in male rats, when LC activity was manipulated just before placement in a second familiar (A/A) and/or novel environment (A/B). We found that bilateral phasic, but not tonic, activation of LC reset hippocampal maps in the A/A condition, whereas silencing the LC with clonidine before placement in the A/B condition blocked map reset and a familiar map emerged in the dentate gyrus, proximal and distal CA1, and CA3c. However, CA3a and CA3b encoded the novel environment. These results support a role for phasic LC responses in generating novel hippocampal sequences during memory encoding and, potentially, memory updating. The silencing experiments suggest that novel environments may not be recognized as different by dentate gyrus and CA1 without LC input. The functional distinction between phasic and tonic LC activity argues that these parameters are critical for determining network changes. These data are consistent with the hippocampus activating internal network representations to encode novel experiential episodes and suggest LC input is critical for this role.SIGNIFICANCE STATEMENT Burst activation of the broadly projecting novelty signaling system of the locus coeruleus initiates new network representations throughout the hippocampus despite unchanged external environments. Tonic activation does not alter network representations in the same condition. This suggests differences in the temporal parameters of neuromodulator network activation are critical for neuromodulator function. Silencing this novelty signaling system prevented the appearance of new network representations in a novel environment. Instead, familiar representations were expressed in a subset of hippocampal areas, with another subset encoding the novel environment. This "being in two places at once" argues for independent functional regions within the hippocampus. These experiments strengthen the view that internal states are major determinants of the brain's construction of environmental representations.


Assuntos
Meio Ambiente , Locus Cerúleo/fisiologia , Orientação/fisiologia , Reconhecimento Psicológico/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Mapeamento Encefálico , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Clonidina/farmacologia , Giro Denteado/fisiologia , Genes Precoces/genética , Processamento de Imagem Assistida por Computador , Masculino , Memória/efeitos dos fármacos , Rede Nervosa/fisiologia , Ratos , Ratos Sprague-Dawley
19.
J Neurophysiol ; 123(5): 1979-1994, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32292110

RESUMO

We perceive objects as permanent and stable despite frequent occlusions and eye movements, but their representation in the visual cortex is neither permanent nor stable. Feature selective cells respond only as long as objects are visible, and their responses depend on eye position. We explored the hypothesis that the system maintains object pointers that provide permanence and stability. Pointers should send facilitatory signals to the feature cells of an object, and these signals should persist across temporary occlusions and remap to compensate for image displacements caused by saccades. Here, we searched for such signals in monkey areas V2 and V4 (Macaca mulatta). We developed a new paradigm in which a monkey freely inspects an array of objects in search for reward while some of the objects are being occluded temporarily by opaque drifting strips. Two types of objects were used to manipulate attention. The results were as follows. 1) Eye movements indicated a robust representation of location and type of the occluded objects; 2) in neurons of V4, but not V2, occluded objects produced elevated activity relative to blank condition; 3) the elevation of activity was reduced for objects that had been fixated immediately before the current fixation ('inhibition of return'); and 4) when attended, or when the target of a saccade, visible objects produced enhanced responses in V4, but occluded objects produced no modulation. Although results 1-3 confirm the hypothesis, the absence of modulation under occlusion is not consistent. Further experiments are needed to resolve this discrepancy.NEW & NOTEWORTHY The way we perceive objects as permanent contrasts with the short-lived responses of visual cortical neurons. A theory postulates pointers that give objects continuity, predicting a class of neurons that respond not only to visual objects but also when an occluded object moves into their receptive field. Here, we tested this theory with a novel paradigm in which a monkey freely scans an array of objects while some of them are transiently occluded.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Mascaramento Perceptivo/fisiologia , Percepção Espacial/fisiologia , Córtex Visual/fisiologia , Animais , Atenção/fisiologia , Comportamento Animal/fisiologia , Macaca mulatta , Masculino , Técnicas de Patch-Clamp
20.
Hippocampus ; 30(8): 851-864, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31571314

RESUMO

In 1980, Nadel and Wilner extended Richard Hirsh's notion that the hippocampus creates environmental representations, called "contexts," suggesting that the fundamental structure of context was the spatial representation proposed by O'Keefe and Nadel's landmark book, The Hippocampus as a Cognitive Map (1978). This book, in turn, derives from the discovery that individual hippocampal neurons act as place cells, with the complete set of place cells tiling an enclosure, forming a type of spatial map. It was found that unique environments had unique place cell representations. That is, if one takes the hippocampal map of a specific environment, this representation scrambles, or "remaps" when the animal is placed in a different environment. Several authors have speculated that "maps" and "remapping" form the physiological substrates for context and context shifting. One difficulty with this definition is that it is exclusively spatial; it can only be inferred when an animal locomotes in an enclosure. There are five aims for this article. The first is to give an historical overview of context as a variable that controls behavior. The second aim is to give an historical overview of concepts of place cell maps and remapping. The third aim is to propose an updated definition of a place cell map, based on temporal rather than spatial overlaps, which adds flexibility. The fourth aim is to address the issue of whether the biological phenomenon of hippocampal remapping, is, in fact, the substrate for shifts in the psychological phenomenon of context. The final aim is speculation of how contextual representations may contribute to effective behavior.


Assuntos
Hipocampo/fisiologia , Navegação Espacial/fisiologia , Animais , Humanos , Percepção Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA