Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 19(1): 91, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299433

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) is essential for human diet. However, high production cost of DHA using C. cohnii makes it currently less competitive commercially, which is mainly caused by low DHA productivity. In recent years, repeated fed-batch strategies have been evaluated for increasing the production of many fermentation products. The reduction in terms of stability of culture system was one of the major challenges for repeated fed-batch fermentation. However, the possible mechanisms responsible for the decreased stability of the culture system in the repeated fed-batch fermentation are so far less investigated, restricting the efforts to further improve the productivity. In this study, a repeated fed-batch strategy for DHA production using C. cohnii M-1-2 was evaluated to improve DHA productivity and reduce production cost, and then the underlying mechanisms related to the gradually decreased stability of the culture system in repeated fed-batch culture were explored through LC- and GC-MS metabolomic analyses. RESULTS: It was discovered that glucose concentration at 15-27 g/L and 80% medium replacement ratio were suitable for the growth of C. cohnii M-1-2 during the repeated fed-batch culture. A four-cycle repeated fed-batch culture was successfully developed and assessed at the optimum cultivation parameters, resulting in increasing the total DHA productivity by 26.28% compared with the highest DHA productivity of 57.08 mg/L/h reported using C. cohnii, including the time required for preparing seed culture and fermentor. In addition, LC- and GC-MS metabolomics analyses showed that the gradually decreased nitrogen utilization capacity, and down-regulated glycolysis and TCA cycle were correlated with the decreased stability of the culture system during the long-time repeated fed-batch culture. At last, some biomarkers, such as Pyr, Cit, OXA, FUM, L-tryptophan, L-threonine, L-leucine, serotonin, and 4-guanidinobutyric acid, correlated with the stability of culture system of C. cohnii M-1-2 were identified. CONCLUSIONS: The study proved that repeated fed-batch cultivation was an efficient and energy-saving strategy for industrial production of DHA using C. cohnii, which could also be useful for cultivation of other microbes to improve productivity and reduce production cost. In addition, the mechanisms study at metabolite level can also be useful to further optimize production processes for C. cohnii and other microbes.


Assuntos
Técnicas de Cultura Celular por Lotes , Ácidos Docosa-Hexaenoicos/biossíntese , Metabolômica , Microalgas/metabolismo , Meios de Cultura/metabolismo , Ácidos Docosa-Hexaenoicos/química , Microalgas/química
2.
Mar Drugs ; 15(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635662

RESUMO

Zeaxanthin is a xanthophyll pigment that is regarded as one of the best carotenoids for the prevention and treatment of degenerative diseases. In the worldwide natural products market, consumers prefer pigments that have been produced from biological sources. In this study, a Dunaliella tertiolecta strain that has 10-15% higher cellular zeaxanthin content than the parent strain (zea1), was obtained by random mutagenesis using ethyl methanesulfonate (EMS) as a mutagen. This mutant, mp3, was grown under various salinities and light intensities to optimize culture conditions for zeaxanthin production. The highest cellular zeaxanthin content was observed at 1.5 M NaCl and 65-85 µmol photons·m-2·s-1, and the highest daily zeaxanthin productivity was observed at 0.6 M NaCl and 140-160 µmol photons·m-2·s-1. The maximal yield of zeaxanthin from mp3 in fed-batch culture was 8 mg·L-1, which was obtained at 0.6 M NaCl and 140-160 µmol photons·m-2·s-1. These results suggest that random mutagenesis with EMS is useful for generating D. tertiolecta strains with increased zeaxanthin content, and also suggest optimal culture conditions for the enhancement of biomass and zeaxanthin production by the zeaxanthin accumulating mutant strains.


Assuntos
Clorófitas/metabolismo , Mutagênese/fisiologia , Zeaxantinas/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Biomassa , Carotenoides/metabolismo , Meios de Cultura/metabolismo , Luz , Fótons , Salinidade , Cloreto de Sódio/metabolismo , Xantofilas/metabolismo
3.
J Biotechnol ; 307: 77-86, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31669355

RESUMO

This study investigates the effect of strategies on poly(3-hydroxybutyrate) [P(3HB)] production in bioreactor. In the production of P(3HB), urea and glucose feeding streams were developed to characterize the fed-batch culture conditions for new Cupriavidus necator NSDG-GG mutant. Feeding urea in repeated fed-batch stage (RFB-I) at 6, and 12 h in cultivation led to insignificant kinetic effect on the cell dry mass (CDM) and P(3HB) accumulation. Feeding glucose in repeated fed-batch stage (RFB-II) demonstrated that the incremental feeding approach of glucose after urea in fill-and-draw (F/D) mode at 24, 30, 36, 42, and 48 h in fermentation increased CDM and P(3HB) concentration. In the 1st cycle in RFB-II, the cumulative CDM reached the value of 26.22 g/L and then it increased with the successive repeated fed-batches to attain biomass of 145 g/L at the end of 5th cycle of RFB-II. The final cumulative P(3HB) concentration at the end of 5th cycle of RFB-II reached 111 g/L with the overall yield of 0.50 g P(3HB) g gluc- 1; the CDM productivity from the RFB-II cycles was in the range of 0.84-1.3 g/(L·h). The RFB-II of glucose in an increment mode produced nearly 2.2 times more increase in CDM and P(3HB) productivities compared to the decrement RFB-II mode. Repeated cultivation had also the advantage of avoiding extra time required for innoculum preparation, and sterilization of bioreactor during batch, thereby it increased the overall industrial importance of the process.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Cupriavidus necator/metabolismo , Glucose/administração & dosagem , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Biomassa , Reatores Biológicos , Cupriavidus necator/crescimento & desenvolvimento , Fermentação
4.
Biotechnol Prog ; 33(6): 1589-1600, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28653476

RESUMO

The green microalga Chlorella sp. TISTR 8990 was grown heterotrophically in the dark using various concentrations of a basal glucose medium with a carbon-to-nitrogen mass ratio of 29:1. The final biomass concentration and the rate of growth were highest in the fivefold concentrated basal glucose medium (25 g L-1 glucose, 2.5 g L-1 KNO3 ) in batch operations. Improving oxygen transfer in the culture by increasing the agitation rate and decreasing the culture volume in 500-mL shake flasks improved growth and glucose utilization. A maximum biomass concentration of nearly 12 g L-1 was obtained within 4 days at 300 rpm, 30°C, with a glucose utilization of nearly 76% in batch culture. The total fatty acid (TFA) content of the biomass and the TFA productivity were 102 mg g-1 and 305 mg L-1 day-1 , respectively. A repeated fed-batch culture with four cycles of feeding with the fivefold concentrated medium in a 3-L bioreactor was evaluated for biomass production. The total culture period was 11 days. A maximum biomass concentration of nearly 26 g L-1 was obtained with a TFA productivity of 223 mg L-1 day-1 . The final biomass contained (w/w) 13.5% lipids, 20.8% protein and 17.2% starch. Of the fatty acids produced, 52% (w/w) were saturated, 41% were monounsaturated and 7% were polyunsaturated (PUFA). A low content of PUFA in TFA feedstock is required for producing high quality biodiesel. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1589-1600, 2017.


Assuntos
Biocombustíveis , Chlorella/crescimento & desenvolvimento , Meios de Cultura/química , Lipídeos/biossíntese , Técnicas de Cultura Celular por Lotes , Biomassa , Carbono/química , Chlorella/química , Chlorella/efeitos dos fármacos , Ácidos Graxos/química , Glucose/química , Lipídeos/química , Nitrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA