Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Cell ; 169(5): 956-969.e17, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28502772

RESUMO

Animals exhibit a behavioral response to novel sensory stimuli about which they have no prior knowledge. We have examined the neural and behavioral correlates of novelty and familiarity in the olfactory system of Drosophila. Novel odors elicit strong activity in output neurons (MBONs) of the α'3 compartment of the mushroom body that is rapidly suppressed upon repeated exposure to the same odor. This transition in neural activity upon familiarization requires odor-evoked activity in the dopaminergic neuron innervating this compartment. Moreover, exposure of a fly to novel odors evokes an alerting response that can also be elicited by optogenetic activation of α'3 MBONs. Silencing these MBONs eliminates the alerting behavior. These data suggest that the α'3 compartment plays a causal role in the behavioral response to novel and familiar stimuli as a consequence of dopamine-mediated plasticity at the Kenyon cell-MBONα'3 synapse.


Assuntos
Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia , Animais , Neurônios Dopaminérgicos/fisiologia , Aprendizagem , Memória , Corpos Pedunculados/citologia , Odorantes , Olfato
2.
J Neurosci ; 44(23)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38627089

RESUMO

According to the predictive processing framework, perception emerges from the reciprocal exchange of predictions and prediction errors (PEs) between hierarchically organized neural circuits. The nonlemniscal division of the inferior colliculus (IC) is the earliest source of auditory PE signals, but their neuronal generators, properties, and functional relevance have remained mostly undefined. We recorded single-unit mismatch responses to auditory oddball stimulation at different intensities, together with activity evoked by two sequences of alternating tones to control frequency-specific effects. Our results reveal a differential treatment of the unpredictable "many-standards" control and the predictable "cascade" control by lemniscal and nonlemniscal IC neurons that is not present in the auditory thalamus or cortex. Furthermore, we found that frequency response areas of nonlemniscal IC neurons reflect their role in subcortical predictive processing, distinguishing three hierarchical levels: (1) nonlemniscal neurons with sharply tuned receptive fields exhibit mild repetition suppression without signaling PEs, thereby constituting the input level of the local predictive processing circuitry. (2) Neurons with broadly tuned receptive fields form the main, "spectral" PE signaling system, which provides dynamic gain compensation to near-threshold unexpected sounds. This early enhancement of saliency reliant on spectral features was not observed in the auditory thalamus or cortex. (3) Untuned neurons form an accessory, "nonspectral" PE signaling system, which reports all surprising auditory deviances in a robust and consistent manner, resembling nonlemniscal neurons in the auditory cortex. These nonlemniscal IC neurons show unstructured and unstable receptive fields that could result from inhibitory input controlled by corticofugal projections conveying top-down predictions.


Assuntos
Estimulação Acústica , Percepção Auditiva , Colículos Inferiores , Colículos Inferiores/fisiologia , Animais , Estimulação Acústica/métodos , Masculino , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Feminino , Vias Auditivas/fisiologia , Potenciais Evocados Auditivos/fisiologia , Macaca mulatta
3.
J Neurosci ; 43(11): 1952-1962, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36759192

RESUMO

Repeated exposure to a stimulus results in reduced neural response, or repetition suppression, in brain regions responsible for processing that stimulus. This rapid accommodation to repetition is thought to underlie learning, stimulus selectivity, and strengthening of perceptual expectations. Importantly, reduced sensitivity to repetition has been identified in several neurodevelopmental, learning, and psychiatric disorders, including autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by challenges in social communication and repetitive behaviors and restricted interests. Reduced ability to exploit or learn from repetition in ASD is hypothesized to contribute to sensory hypersensitivities, and parallels several theoretical frameworks claiming that ASD individuals show difficulty using regularities in the environment to facilitate behavior. Using fMRI in autistic and neurotypical human adults (females and males), we assessed the status of repetition suppression across two modalities (vision, audition) and with four stimulus categories (faces, objects, printed words, and spoken words). ASD individuals showed domain-specific reductions in repetition suppression for face stimuli only, but not for objects, printed words, or spoken words. Reduced repetition suppression for faces was associated with greater challenges in social communication in ASD. We also found altered functional connectivity between atypically adapting cortical regions and higher-order face recognition regions, and microstructural differences in related white matter tracts in ASD. These results suggest that fundamental neural mechanisms and system-wide circuits are selectively altered for face processing in ASD and enhance our understanding of how disruptions in the formation of stable face representations may relate to higher-order social communication processes.SIGNIFICANCE STATEMENT A common finding in neuroscience is that repetition results in plasticity in stimulus-specific processing regions, reflecting selectivity and adaptation (repetition suppression [RS]). RS is reduced in several neurodevelopmental and psychiatric conditions including autism spectrum disorder (ASD). Theoretical frameworks of ASD posit that reduced adaptation may contribute to associated challenges in social communication and sensory processing. However, the scope of RS differences in ASD is unknown. We examined RS for multiple categories across visual and auditory domains (faces, objects, printed words, spoken words) in autistic and neurotypical individuals. We found reduced RS in ASD for face stimuli only and altered functional connectivity and white matter microstructure between cortical face-recognition areas. RS magnitude correlated with social communication challenges among autistic individuals.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Reconhecimento Facial , Masculino , Adulto , Feminino , Humanos , Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética/métodos
4.
Neuroimage ; 285: 120488, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065278

RESUMO

A model based on inhibitory coupling has been proposed to explain perceptual oscillations. This 'adapting reciprocal inhibition' model postulates that it is the strength of inhibitory coupling that determines the fate of competition between percepts. Here, we used an fMRI-based adaptation technique to reveal the influence of neighboring neuronal populations, such as reciprocal inhibition, in motion-selective hMT+/V5. If reciprocal inhibition exists in this region, the following predictions should hold: 1. stimulus-driven response would not simply decrease, as predicted by simple repetition-suppression of neuronal populations, but instead, increase due to the activity from adjacent populations; 2. perceptual decision involving competing representations, should reflect decreased reciprocal inhibition by adaptation; 3. neural activity for the competing percept should also later on increase upon adaptation. Our results confirm these three predictions, showing that a model of perceptual decision based on adapting reciprocal inhibition holds true. Finally, they also show that the net effect of the well-known repetition suppression phenomenon can be reversed by this mechanism.


Assuntos
Inibição Psicológica , Neurônios , Humanos
5.
Exp Brain Res ; 242(3): 525-541, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200371

RESUMO

In the human electroencephalogram (EEG), induced oscillatory responses in various frequency bands are regarded as valuable indices to examine the neural mechanisms underlying human memory. While the advent of virtual reality (VR) drives the investigation of mnemonic processing under more lifelike settings, the joint application of VR and EEG methods is still in its infancy (e.g., due to technical limitations impeding the signal acquisition). The objective of the present EEG study was twofold. First, we examined whether the investigation of induced oscillations under VR conditions yields equivalent results compared to standard paradigms. Second, we aimed at obtaining further insights into basic memory-related brain mechanisms in VR. To these ends, we relied on a standard implicit memory design, namely repetition priming, for which the to-be-expected effects are well-documented for conventional studies. Congruently, we replicated a suppression of the evoked potential after stimulus onset. Regarding the induced responses, we observed a modulation of induced alphaband in response to a repeated stimulus. Importantly, our results revealed a repetition-related suppression of the high-frequency induced gammaband response (>30 Hz), indicating the sharpening of a cortical object representation fostering behavioral priming effects. Noteworthy, the analysis of the induced gammaband responses required a number of measures to minimize the influence of external and internal sources of artefacts (i.e., the electrical shielding of the technical equipment and the control for miniature eye movements). In conclusion, joint VR-EEG studies with a particular focus on induced oscillatory responses offer a promising advanced understanding of mnemonic processing under lifelike conditions.


Assuntos
Priming de Repetição , Realidade Virtual , Humanos , Priming de Repetição/fisiologia , Encéfalo/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia
6.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903238

RESUMO

Memories of the images that we have seen are thought to be reflected in the reduction of neural responses in high-level visual areas such as inferotemporal (IT) cortex, a phenomenon known as repetition suppression (RS). We challenged this hypothesis with a task that required rhesus monkeys to report whether images were novel or repeated while ignoring variations in contrast, a stimulus attribute that is also known to modulate the overall IT response. The monkeys' behavior was largely contrast invariant, contrary to the predictions of an RS-inspired decoder, which could not distinguish responses to images that are repeated from those that are of lower contrast. However, the monkeys' behavioral patterns were well predicted by a linearly decodable variant in which the total spike count was corrected for contrast modulation. These results suggest that the IT neural activity pattern that best aligns with single-exposure visual recognition memory behavior is not RS but rather sensory referenced suppression: reductions in IT population response magnitude, corrected for sensory modulation.


Assuntos
Córtex Cerebral/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Macaca mulatta/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Reconhecimento Psicológico/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Córtex Visual/diagnóstico por imagem
7.
Neuroimage ; 284: 120457, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977407

RESUMO

BACKGROUND: The emotional domain is often impaired across many neurological diseases, for this reason it represents a relevant target of rehabilitation interventions. Functional changes in neural activity related to treatment can be assessed with functional MRI (fMRI) using emotion-generation tasks in longitudinal settings. Previous studies demonstrated that within-subject fMRI signal reliability can be affected by several factors such as repetition suppression, type of task and brain anatomy. However, the differential role of repetition suppression and emotional valence of the stimuli on the fMRI signal reliability and reproducibility during an emotion-generation task involving the vision of emotional pictures is yet to be determined. METHODS: Sixty-two healthy subjects were enrolled and split into two groups: group A (21 subjects, test-retest reliability on same-day and with same-task-form), group B (30 subjects, test-retest reproducibility with 4-month-interval using two equivalent-parallel forms of the task). Test-retest reliability and reproducibility of fMRI responses and patterns were evaluated separately for positive and negative emotional valence conditions in both groups. The analyses were performed voxel-wise, using the general linear model (GLM), and via a region-of-interest (ROI)-based approach, by computing the intra-class correlation coefficient (ICC) on the obtained contrasts. RESULTS: The voxel-wise GLM test yielded no significant differences for both conditions in reliability and reproducibility analyses. As to the ROI-based approach, across all areas with significant main effects of the stimuli, the reliability, as measured with ICC, was poor (<0.4) for the positive condition and ranged from poor to excellent (0.4-0.75) for the negative condition. The ICC-based reproducibility analysis, related to the comparison of two different parallel forms, yielded similar results. DISCUSSION: The voxel-wise GLM analysis failed to capture the poor reliability of fMRI signal which was instead highlighted using the ROI-based ICC analysis. The latter showed higher signal reliability for negative valence stimuli with respect to positive ones. The implementation of two parallel forms allowed to exclude neural suppression as the predominant effect causing low signal reliability, which could be instead ascribed to the employment of different neural strategies to cope with emotional stimuli over time. This is an invaluable information for a better assessment of treatment and rehabilitation effects in longitudinal studies of emotional neural processing.


Assuntos
Habituação Psicofisiológica , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Emoções/fisiologia , Mapeamento Encefálico/métodos
8.
Hum Brain Mapp ; 44(11): 4310-4320, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37226979

RESUMO

Humans are goal-directed; however, goal-unrelated information still affects us, but how? The Stroop task is often used to answer this question, relying on conflict (incongruency) between attributes, one targeted by the task and another irrelevant to the task. The frontal regions of the brain are known to play a crucial role in processing such conflict, as they show increased activity when we encounter incongruent stimuli. Notably, the Stroop stimuli also consist of conceptual dimensions, such as semantic or emotional content, that are independent of the attributes that define the conflict. Since the non-targeted attribute usually refers to the same conceptual dimension as the targeted-attribute, it is relevant to the task at hand. For example, when naming the emotion of an emotional face superimposed by an emotional word, both the targeted-attribute and the non-targeted attribute refer to the conceptual dimension "emotion". We designed an fMRI paradigm to investigate how conflicts between different conceptual dimensions impact us. Even though the conflict was task-irrelevant, incongruent stimuli resulted in longer reaction times, indicating a behavioral congruency effect. When examining the neural mechanisms that underlie this effect, we found that the frontal regions exhibited repetition suppression, while the bilateral intraparietal sulcus (IPS) showed a congruency effect linked to the behavioral effect. Taken together, these findings suggest that individuals are unable to completely ignore task-irrelevant information, and that the IPS plays a crucial role in processing such information.


Assuntos
Encéfalo , Emoções , Humanos , Tempo de Reação , Encéfalo/diagnóstico por imagem , Teste de Stroop , Mapeamento Encefálico
9.
Brain Topogr ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971687

RESUMO

The visual N1 (N170) component with occipito-temporal negativity and fronto-central positivity is sensitive to visual expertise for print. Slightly later, an N200 component with an increase after stimulus repetition was reported to be specific for Chinese, but found at centro-parietal electrodes against a mastoid reference. Given the unusual location, temporal proximity to the N1, and atypical repetition behavior, we aimed at clarifying the relation between the two components. We collected 128-channel EEG data from 18 native Chinese readers during a script decision experiment. Familiar Chinese one- and two-character words were presented among unfamiliar Korean control stimuli with half of the stimuli immediately repeated. Stimulus repetition led to a focal increase in the N1 onset and to a wide-spread decrease in the N1 offset, especially for familiar Chinese and also prominently near the mastoids. A TANOVA analysis corroborated robust repetition effects in the N1 offset across ERP maps with a modulation by script familiarity around 300 ms. Microstate analyses revealed a shorter N1 microstate duration after repetitions, especially for Chinese. The results demonstrate that the previously reported centro-parietal N200 effects after repetitions reflect changes during the N1 offset at occipito-temporal electrodes including the mastoids. Although larger for Chinese, repetition effects could also be found for two-character Korean words, suggesting that they are not specific for Chinese. While the decrease of the N1 offset after repetition is in agreement with a repetition suppression effect, the microstate findings suggest that at least part of the facilitation is due to accelerated processing after repetition.

10.
Cereb Cortex ; 32(6): 1159-1169, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34427292

RESUMO

Oxytocin (OT) is known as a neuropeptide that promotes social adaptation. Individuating racial in-group members and viewing racial out-groups in categories is an adaptive strategy that evolved to aid effective social interaction. Nevertheless, whether OT modulates the neural individuation/categorization processing of racial in-group and out-group faces remain unknown. After intranasal OT or placebo administration, 46 male participants (OT: 24, placebo: 22) were presented with face pairs with the same or different identities or races in rapid succession. The neural repetition suppression (RS) effects to identity and race were measured using functional magnetic resonance imaging (fMRI) as indices of individuation/categorization face-processing. The results showed that while OT increased the RS effect to race, it decreased the RS effect to identity in the right fusiform face area. As for the left occipital face area, OT enlarged the differential RS effects to identities of in-group and out-group faces. Additionally, OT modulated the association of interdependence self-construal and the RS effects on identity and race. These findings bring to light preliminary evidence that OT can regulate neuronal specificity of identity and race in early face-selective regions and benefit adaptive individuation/categorization face-processing.


Assuntos
Reconhecimento Facial , Ocitocina , Córtex Cerebral/fisiologia , Humanos , Individuação , Imageamento por Ressonância Magnética/métodos , Masculino
11.
Cereb Cortex ; 32(23): 5467-5477, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35149872

RESUMO

Neuronal repetition effect (repetition suppression and repetition enhancement) and change detection responses are fundamental brain responses that have implications in learning and cognitive development in infants and children. Studies have shown altered neuronal repetition and change detection responses in various clinical populations. However, the developmental course of these neuronal responses from infancy through childhood is still unknown. Using an electroencephalography oddball task, we investigate the developmental peculiarities of repetition effect and change detection responses in 43 children that we followed longitudinally from 3 months to 4 years of age. Analyses were conducted on theta (3-5 Hz), alpha (5-10 Hz), and beta (10-30 Hz) time-frequency windows. Results indicated that in the theta time-frequency window, in frontocentral and frontal regions of the brain, repetition and change detection responses followed a U-shaped pattern from 3 months to 4 years of age. Moreover, the change detection response was stronger in young infants compared to older children in frontocentral regions, regardless of the time-frequency window. Our findings add to the evidence of top-down modulation of perceptual systems in infants and children.


Assuntos
Encéfalo , Eletroencefalografia , Lactente , Humanos , Criança , Adolescente , Estudos Longitudinais , Eletroencefalografia/métodos , Encéfalo/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia
12.
J Neurosci ; 41(36): 7649-7661, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34312223

RESUMO

How does the brain change during learning? In functional magnetic resonance imaging (fMRI) studies, both multivariate pattern analysis (MVPA) and repetition suppression (RS) have been used to detect changes in neuronal representations. In the context of motor sequence learning, the two techniques have provided discrepant findings: pattern analysis showed that only premotor and parietal regions, but not primary motor cortex (M1), develop a representation of trained sequences. In contrast, RS suggested trained sequence representations in all these regions. Here, we applied both analysis techniques to a five-week finger sequence training study, in which participants executed each sequence twice before switching to a different sequence. Both RS and pattern analysis indicated learning-related changes for parietal areas, but only RS showed a difference between trained and untrained sequences in M1. A more fine-grained analysis, however, revealed that the RS effect in M1 reflects a fundamentally different process than in parietal areas. On the first execution, M1 represents especially the first finger of each sequence, likely reflecting preparatory processes. This effect dramatically reduces during the second execution. In contrast, parietal areas represent the identity of a sequence, and this representation stays relatively stable on the second execution. These results suggest that the RS effect does not reflect a trained sequence representation in M1, but rather a preparatory signal for movement initiation. More generally, our study demonstrates that across regions RS can reflect different representational changes in the neuronal population code, emphasizing the importance of combining pattern analysis and RS techniques.SIGNIFICANCE STATEMENT Previous studies using pattern analysis have suggested that primary motor cortex (M1) does not represent learnt sequential actions. However, a study using repetition suppression (RS) has reported M1 changes during motor sequence learning. Combining both techniques, we first replicate the discrepancy between them, with learning-related changes in M1 in RS, but not pattern dissimilarities. We further analyzed the representational changes with repetition, and found that the RS effects differ across regions. M1's activity represents the starting finger of the sequence, an effect that vanishes with repetition. In contrast, activity patterns in parietal areas exhibit sequence dependency, which persists with repetition. These results demonstrate the importance of combining RS and pattern analysis to understand the function of brain regions.


Assuntos
Aprendizagem/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Dedos/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Adulto Jovem
13.
J Neurosci ; 41(17): 3917-3931, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33731446

RESUMO

Tau deposition begins in the medial temporal lobe (MTL) in aging and Alzheimer's disease (AD), and MTL neural dysfunction is commonly observed in these groups. However, the association between tau and MTL neural activity has not been fully characterized. We investigated the effects of tau on repetition suppression, the reduction of activity for repeated stimulus presentations compared to novel stimuli. We used task-based functional MRI (fMRI) to assess MTL subregional activity in 21 young adults (YA) and 45 cognitively normal human older adults (OA; total sample: 37 females, 29 males). AD pathology was measured with position emission tomography (PET), using 18F-Flortaucipir for tau and 11C-Pittsburgh compound B (PiB) for amyloid-ß (Aß). The MTL was segmented into six subregions using high-resolution structural images. We compared the effects of low tau pathology, restricted to entorhinal cortex and hippocampus (Tau- OA), to high tau pathology, also occurring in temporal and limbic regions (Tau+ OA). Low levels of tau (Tau- OA vs YA) were associated with reduced repetition suppression activity specifically in anterolateral entorhinal cortex (alEC) and hippocampus, the first regions to accumulate tau. High tau pathology (Tau+ vs Tau- OA) was associated with widespread reductions in repetition suppression across MTL. Further analyses indicated that reduced repetition suppression was driven by hyperactivity to repeated stimuli, rather than decreased activity to novel stimuli. Increased activation was associated with entorhinal tau, but not Aß. These findings reveal a link between tau deposition and neural dysfunction in MTL, in which tau-related hyperactivity prevents deactivation to repeated stimuli, leading to reduced repetition suppression.SIGNIFICANCE STATEMENT Abnormal neural activity occurs in the medial temporal lobe (MTL) in aging and Alzheimer's disease (AD). Because tau pathology first deposits in the MTL in aging, this altered activity may be due to local tau pathology, and distinct MTL subregions may be differentially vulnerable. We demonstrate that in older adults (OAs) with low tau pathology, there are focal alterations in activity in MTL subregions that first develop tau pathology, while OAs with high tau pathology have aberrant activity throughout MTL. Tau was associated with hyperactivity to repeated stimulus presentations, leading to reduced repetition suppression, the discrimination between novel and repeated stimuli. Our data suggest that tau deposition is related to abnormal activity in MTL before the onset of cognitive decline.


Assuntos
Envelhecimento/fisiologia , Lobo Temporal/fisiologia , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Córtex Entorrinal/diagnóstico por imagem , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Priming de Repetição , Tauopatias/diagnóstico por imagem , Tauopatias/psicologia , Lobo Temporal/metabolismo , Adulto Jovem , Proteínas tau/metabolismo
14.
Neuroimage ; 264: 119708, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280098

RESUMO

Stimulus repetition normally causes reduced neural activity in brain regions that process that stimulus. Some theories claim that this "repetition suppression" reflects local mechanisms such as neuronal fatigue or sharpening within a region, whereas other theories claim that it results from changed connectivity between regions, following changes in synchrony or top-down predictions. In this study, we applied dynamic causal modeling (DCM) on a public fMRI dataset involving repeated presentations of faces and scrambled faces to test whether repetition affected local (self-connections) and/or between-region connectivity in left and right early visual cortex (EVC), occipital face area (OFA) and fusiform face area (FFA). Face "perception" (faces versus scrambled faces) modulated nearly all connections, within and between regions, including direct connections from EVC to FFA, supporting a non-hierarchical view of face processing. Face "recognition" (familiar versus unfamiliar faces) modulated connections between EVC and OFA/FFA, particularly in the left hemisphere. Most importantly, immediate and delayed repetition of stimuli were also best captured by modulations of connections between EVC and OFA/FFA, but not self-connections of OFA/FFA, consistent with synchronization or predictive coding theories, though also possibly reflecting local mechanisms like synaptic depression.


Assuntos
Reconhecimento Facial , Imageamento por Ressonância Magnética , Humanos , Lobo Temporal/fisiologia , Reconhecimento Facial/fisiologia , Mapeamento Encefálico , Reconhecimento Psicológico/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos
15.
Neuroimage ; 263: 119647, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162634

RESUMO

Recognising a speaker's identity by the sound of their voice is important for successful interaction. The skill depends on our ability to discriminate minute variations in the acoustics of the vocal signal. Performance on voice identity assessments varies widely across the population. The neural underpinnings of this ability and its individual differences, however, remain poorly understood. Here we provide critical tests of a theoretical framework for the neural processing stages of voice identity and address how individual differences in identity discrimination mediate activation in this neural network. We scanned 40 individuals on an fMRI adaptation task involving voices drawn from morphed continua between two personally familiar identities. Analyses dissociated neuronal effects induced by repetition of acoustically similar morphs from those induced by a switch in perceived identity. Activation in temporal voice-sensitive areas decreased with acoustic similarity between consecutive stimuli. This repetition suppression effect was mediated by the performance on an independent voice assessment and this result highlights an important functional role of adaptive coding in voice expertise. Bilateral anterior insulae and medial frontal gyri responded to a switch in perceived voice identity compared to an acoustically equidistant switch within identity. Our results support a multistep model of voice identity perception.


Assuntos
Acústica , Doenças Auditivas Centrais , Cognição , Reconhecimento de Voz , Humanos , Estimulação Acústica , Cognição/fisiologia , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/fisiologia , Reconhecimento de Voz/fisiologia , Doenças Auditivas Centrais/fisiopatologia , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Rede Nervosa/fisiologia
16.
J Neurophysiol ; 128(2): 378-394, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35830503

RESUMO

When an image is presented twice in succession, neurons in area TE of macaque inferotemporal cortex exhibit repetition suppression, responding less strongly to the second presentation than to the first. Suppression is known to occur if the adapter and the test image are subtly different from each other. However, it is not known whether cross suppression occurs between images that are radically different from each other but that share a subset of features. To explore this issue, we measured repetition suppression using colored shapes. On interleaved trials, the test image might be identical to the adapter, might share its shape or color alone, or might differ from it totally. At the level of the neuronal population as a whole, suppression was especially deep when adapter and test were identical, intermediate when they shared only one attribute, and minimal when they shared neither attribute. At the level of the individual neuron, the degree of suppression depended not only on the properties of the two images but also on the preferences of the neuron. Suppression was deeper when the repeated color or shape was preferred by the neuron than when it was not. This effect might arise from feature-specific adaptation or alternatively from adapter-induced fatigue. Both mechanisms conform to the principle that the degree of suppression is determined by the preferences of the neuron.NEW & NOTEWORTHY When an image is presented twice in rapid succession, neurons of inferotemporal cortex exhibit repetition suppression, responding less strongly to the second than to the first presentation. It has been unclear whether this phenomenon depends on the selectivity of the neuron under study. Here, we show that, for a given neuron, suppression is deepest when features preferred by that neuron are repeated. The results argue for a mechanism based either on feature-specific suppression or fatigue.


Assuntos
Córtex Cerebral , Lobo Temporal , Animais , Córtex Cerebral/fisiologia , Fadiga , Macaca mulatta , Estimulação Luminosa/métodos , Lobo Temporal/fisiologia
17.
Eur J Neurosci ; 55(6): 1601-1613, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34766394

RESUMO

Identifying unexpected acoustic inputs, which allows to react appropriately to new situations, is of major importance for animals. Neural deviance detection describes a change of neural response strength to a stimulus solely caused by the stimulus' probability of occurrence. In the present study, we searched for correlates of deviance detection in auditory brainstem responses obtained in anaesthetised bats (Carollia perspicillata). In an oddball paradigm, we used two pure tone stimuli that represented the main frequencies used by the animal during echolocation (60 kHz) and communication (20 kHz). For both stimuli, we could demonstrate significant differences of response strength between deviant and standard response in slow and fast components of the auditory brainstem response. The data suggest the presence of correlates of deviance detection in brain stations below the inferior colliculus (IC), at the level of the cochlea nucleus and lateral lemniscus. Additionally, our results suggest that deviance detection is mainly driven by repetition suppression in the echolocation frequency band, while in the communication band, a deviant-related enhancement of the response plays a more important role. This finding suggests a contextual dependence of the mechanisms underlying subcortical deviance detection. The present study demonstrates the value of auditory brainstem responses for studying deviance detection and suggests that auditory specialists, such as bats, use different frequency-specific strategies to ensure an appropriate sensation of unexpected sounds.


Assuntos
Córtex Auditivo , Quirópteros , Colículos Inferiores , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Colículos Inferiores/fisiologia
18.
Cereb Cortex ; 31(12): 5449-5459, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34180511

RESUMO

The frontoparietal semantic network, encompassing the inferior frontal gyrus and the posterior middle temporal cortex, is considered to be involved in semantic control processes. The explicit versus implicit nature of these control processes remains however poorly understood. The present study examined this question by assessing regional brain responses to the semantic attributes of an unattended stream of auditory words while participants' top-down attentional control processes were absorbed by a demanding visual search task. Response selectivity to semantic aspects of verbal stimuli was assessed via a functional magnetic resonance imaging response adaptation paradigm. We observed that implicit semantic processing of an unattended verbal stream recruited not only unimodal and amodal cortices in posterior supporting semantic knowledge areas, but also inferior frontal and posterior middle temporal areas considered to be part of the semantic control network. These results indicate that frontotemporal semantic networks support incidental semantic (control) processes.


Assuntos
Web Semântica , Semântica , Mapeamento Encefálico , Humanos , Córtex Pré-Frontal/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia
19.
Cereb Cortex ; 31(12): 5319-5330, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34185848

RESUMO

The brain's capacity to adapt to sensory inputs is key for processing sensory information efficiently and interacting in new environments. Following repeated exposure to the same sensory input, brain activity in sensory areas is known to decrease as inputs become familiar, a process known as adaptation. Yet, the brain-wide mechanisms that mediate adaptive processing remain largely unknown. Here, we combine multimodal brain imaging (functional magnetic resonance imaging [fMRI], magnetic resonance spectroscopy) with behavioral measures of orientation-specific adaptation (i.e., tilt aftereffect) to investigate the functional and neurochemical mechanisms that support adaptive processing. Our results reveal two functional brain networks: 1) a sensory-adaptation network including occipital and dorsolateral prefrontal cortex regions that show decreased fMRI responses for repeated stimuli and 2) a perceptual-memory network including regions in the parietal memory network (PMN) and dorsomedial prefrontal cortex that relate to perceptual bias (i.e., tilt aftereffect). We demonstrate that adaptation relates to increased occipito-parietal connectivity, while decreased connectivity between sensory-adaptation and perceptual-memory networks relates to GABAergic inhibition in the PMN. Thus, our findings provide evidence that suppressive interactions between sensory-adaptation (i.e., occipito-parietal) and perceptual-memory (i.e., PMN) networks support adaptive processing and behavior, proposing a key role of memory systems in efficient sensory processing.


Assuntos
Mapeamento Encefálico , Encéfalo , Adaptação Psicológica , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/fisiologia
20.
Cereb Cortex ; 31(6): 3136-3152, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33683317

RESUMO

A recent formulation of predictive coding theory proposes that a subset of neurons in each cortical area encodes sensory prediction errors, the difference between predictions relayed from higher cortex and the sensory input. Here, we test for evidence of prediction error responses in spiking responses and local field potentials (LFP) recorded in primary visual cortex and area V4 of macaque monkeys, and in complementary electroencephalographic (EEG) scalp recordings in human participants. We presented a fixed sequence of visual stimuli on most trials, and violated the expected ordering on a small subset of trials. Under predictive coding theory, pattern-violating stimuli should trigger robust prediction errors, but we found that spiking, LFP and EEG responses to expected and pattern-violating stimuli were nearly identical. Our results challenge the assertion that a fundamental computational motif in sensory cortex is to signal prediction errors, at least those based on predictions derived from temporal patterns of visual stimulation.


Assuntos
Eletroencefalografia/métodos , Estimulação Luminosa/métodos , Córtex Visual Primário/fisiologia , Córtex Visual/fisiologia , Adulto , Animais , Eletrodos Implantados , Potenciais Evocados Visuais/fisiologia , Feminino , Previsões , Humanos , Macaca , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA