Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113358

RESUMO

Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.

2.
Drug Resist Updat ; 74: 101082, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569225

RESUMO

Molecular targeted drugs and chimeric antigen receptor (CAR) T cell therapy represent specific biological treatments that have significantly improved the efficacy of treating hematologic malignancies. However, they face challenges such as drug resistance and recurrence after treatment. Combining molecular targeted drugs and CAR-T cells could regulate immunity, improve tumor microenvironment (TME), promote cell apoptosis, and enhance sensitivity to tumor cell killing. This approach might provide a dual coordinated attack on cancer cells, effectively eliminating minimal residual disease and overcoming therapy resistance. Moreover, molecular targeted drugs can directly or indirectly enhance the anti-tumor effect of CAR-T cells by inducing tumor target antigen expression, reversing CAR-T cell exhaustion, and reducing CAR-T cell associated toxic side effects. Therefore, combining molecular targeted drugs with CAR-T cells is a promising and novel tactic for treating hematologic malignancies. In this review article, we focus on analyzing the mechanism of therapy resistance and its reversal of CAR-T cell therapy resistance, as well as the synergistic mechanism, safety, and future challenges in CAR-T cell therapy in combination with molecular targeted drugs. We aim to explore the benefits of this combination therapy for patients with hematologic malignancies and provide a rationale for subsequent clinical studies.


Assuntos
Neoplasias Hematológicas , Imunoterapia Adotiva , Terapia de Alvo Molecular , Microambiente Tumoral , Humanos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/tratamento farmacológico , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/tendências , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Terapia de Alvo Molecular/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Terapia Combinada/métodos , Receptores de Antígenos Quiméricos/imunologia , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Animais
3.
BMC Plant Biol ; 24(1): 324, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658831

RESUMO

Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) significantly affects the production of cabbage and other cruciferous vegetables. Plant antioxidant system plays an important role in pathogen invasion and is one of the main mechanisms underlying resistance to biological stress. Therefore, it is important to study the resistance mechanisms of the cabbage antioxidant system during the early stages of Xcc. In this study, 108 CFU/mL (OD600 = 0.1) Xcc race1 was inoculated on "zhonggan 11" cabbage using the spraying method. The effects of Xcc infection on the antioxidant system before and after Xcc inoculation (0, 1, 3, and 5 d) were studied by physiological indexes determination, transcriptome and metabolome analyses. We concluded that early Xcc infection can destroy the balance of the active oxygen metabolism system, increase the generation of free radicals, and decrease the scavenging ability, leading to membrane lipid peroxidation, resulting in the destruction of the biofilm system and metabolic disorders. In response to Xcc infection, cabbage clears a series of reactive oxygen species (ROS) produced during Xcc infection via various antioxidant pathways. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased after Xcc infection, and the ROS scavenging rate increased. The biosynthesis of non-obligate antioxidants, such as ascorbic acid (AsA) and glutathione (GSH), is also enhanced after Xcc infection. Moreover, the alkaloid and vitamin contents increased significantly after Xcc infection. We concluded that cabbage could resist Xcc invasion by maintaining the stability of the cell membrane system and improving the biosynthesis of antioxidant substances and enzymes after infection by Xcc. Our results provide theoretical basis and data support for subsequent research on the cruciferous vegetables resistance mechanism and breeding to Xcc.


Assuntos
Antioxidantes , Brassica , Doenças das Plantas , Xanthomonas campestris , Xanthomonas campestris/fisiologia , Xanthomonas campestris/patogenicidade , Brassica/microbiologia , Brassica/metabolismo , Antioxidantes/metabolismo , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo
4.
BMC Plant Biol ; 24(1): 29, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172651

RESUMO

BACKGROUND: Fusarium crown rot (FCR) is one of the most significant diseases limiting crop production in the Huanghuai wheat-growing region of China. Prothioconazole, a triazole sterol 14α-demethylation inhibitor (DMI) fungicide developed by the Bayer Crop Protection Company, is mainly registered for the prevention and control of wheat powdery mildew and stripe rust (China Pesticide Information Network). It is known to exhibit high activity against F. pseudograminearum, but further research, particularly regarding the potential for fungicide resistance, is required before it can be registered for the control of FCR in China. RESULTS: The current study found that the baseline sensitivity of 67 field isolates of F. pseudograminearum collected between 2019 and 2021 ranged between 0.016-2.974 µg/mL, with an average EC50 value of 1.191 ± 0.720 µg/mL (mean ± SD). Although none of the field isolates exhibited signs of resistance, three highly resistant mutants were produced by repeated exposure to prothioconazole under laboratory conditions. All of the mutants were found to exhibit significantly reduced growth rates on potato dextrose agar (PDA), as well as reduced levels of sporulation, which indicated that there was a fitness cost associated with the resistance. However, inoculation of wounded wheat coleoptiles revealed that the pathogenicity of the resistant mutants was little affected or actually increased. Molecular analysis of the genes corresponding to the prothioconazole target protein, FpCYP51 (FpCYP51A, FpCYP51B, and FpCYP51C), indicated that the resistant mutants contained three conserved substitutions (M63I, A205S, and I246V) that were present in the FpCYP51C sequence of all three mutants, as well as several non-conserved substations in their FpCYP51A and FpCYP51B sequences. Expression analysis revealed that the presence of prothioconazole (0.1 µg/mL) generally resulted in reduced expression of the three FpCYP51 genes, but that the three mutants exhibited more complex patterns of expression that differed in comparison to their parental isolates. The study found no evidence of cross-resistance between prothioconazole and any of the fungicides tested including three DMI fungicides tebuconazole, prochloraz, and flutriafol. CONCLUSIONS: Taken together these results not only provide new insight into the resistant mechanism and biological characteristics associated with prothioconazole resistance in F. pseudograminearum, but also strong evidence that prothioconazole could provide effective and sustained control of FCR, especially when applied in combination with other fungicides.


Assuntos
Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Triazóis/farmacologia , China , Doenças das Plantas/genética
5.
Appl Environ Microbiol ; 90(5): e0029424, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624200

RESUMO

Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.


Assuntos
Aspergillus oryzae , Carboxiliases , Proteínas Fúngicas , Oryza , Aspergillus oryzae/genética , Aspergillus oryzae/enzimologia , Carboxiliases/genética , Carboxiliases/metabolismo , Carboxiliases/química , Oryza/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Agmatina/metabolismo
6.
Appl Environ Microbiol ; 90(7): e0056924, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38916292

RESUMO

Microbial community adaptability to pH stress plays a crucial role in biofilm formation. This study aims to investigate the regulatory mechanisms of exogenous putrescine on pH stress, as well as enhance understanding and application for the technical measures and molecular mechanisms of biofilm regulation. Findings demonstrated that exogenous putrescine acted as a switch-like distributor affecting microorganism pH stress, thus promoting biofilm formation under acid conditions while inhibiting it under alkaline conditions. As pH decreases, the protonation degree of putrescine increases, making putrescine more readily adsorbed. Protonated exogenous putrescine could increase cell membrane permeability, facilitating its entry into the cell. Subsequently, putrescine consumed intracellular H+ by enhancing the glutamate-based acid resistance strategy and the γ-aminobutyric acid metabolic pathway to reduce acid stress on cells. Furthermore, putrescine stimulated ATPase expression, allowing for better utilization of energy in H+ transmembrane transport and enhancing oxidative phosphorylation activity. However, putrescine protonation was limited under alkaline conditions, and the intracellular H+ consumption further exacerbated alkali stress and inhibits cellular metabolic activity. Exogenous putrescine promoted the proportion of fungi and acidophilic bacteria under acidic stress and alkaliphilic bacteria under alkali stress while having a limited impact on fungi in alkaline biofilms. Increasing Bdellovibrio under alkali conditions with putrescine further aggravated the biofilm decomposition. This research shed light on the unclear relationship between exogenous putrescine, environmental pH, and pH stress adaptability of biofilm. By judiciously employing putrescine, biofilm formation could be controlled to meet the needs of engineering applications with different characteristics.IMPORTANCEThe objective of this study is to unravel the regulatory mechanism by which exogenous putrescine influences biofilm pH stress adaptability and understand the role of environmental pH in this intricate process. Our findings revealed that exogenous putrescine functioned as a switch-like distributor affecting the pH stress adaptability of biofilm-based activated sludge, which promoted energy utilization for growth and reproduction processes under acidic conditions while limiting biofilm development to conserve energy under alkaline conditions. This study not only clarified the previously ambiguous relationship between exogenous putrescine, environmental pH, and biofilm pH stress adaptability but also offered fresh insights into enhancing biofilm stability within extreme environments. Through the modulation of energy utilization, exerting control over biofilm growth and achieving more effective engineering goals could be possible.


Assuntos
Biofilmes , Putrescina , Esgotos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Putrescina/metabolismo , Putrescina/farmacologia , Esgotos/microbiologia , Estresse Fisiológico , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Adaptação Fisiológica
7.
Insect Mol Biol ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613398

RESUMO

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

8.
Eur J Clin Microbiol Infect Dis ; 43(1): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973693

RESUMO

Renew interest and enthusiasm for anaerobes stem from both technological improvements (culture media, production of an adequate anaerobic atmosphere, identification methods) and greater awareness on the part of clinicians. Anaerobic infections were historically treated empirically, targeting the species known to be involved in each type of infection. Prevotella, fusobacteria, and Gram-positive cocci (GPAC) were considered responsible for infections above the diaphragm whereas for intra-abdominal infections, Bacteroides of the fragilis group (BFG), GPAC and clostridia were predominantly implicated. The antibiotic susceptibility of anaerobes was only taken into consideration by the clinician in the event of treatment failure or when faced with infections by multidrug-resistant bacteria (MDR). The evolution of antibiotic resistance together with clinical failures due to the absence of detection of hetero-resistant clones has resulted in a greater need for accessible antibiotic susceptibility testing (AST) and disc diffusion method. Improved isolation and identification of anaerobes, along with the availability of accessible and robust methods for performing AST, will ensure that treatment, whether empirical or guided by an antibiogram, will lead to better outcomes for anaerobic infections.


Assuntos
Infecções Bacterianas , Cocos Gram-Positivos , Humanos , Farmacorresistência Bacteriana , Bactérias Anaeróbias , Clostridium , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia
9.
Ann Clin Microbiol Antimicrob ; 23(1): 13, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347529

RESUMO

BACKGROUND: Recently, extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) isolates have been increasingly detected and posed great challenges to clinical anti-infection treatments. However, little is known about extensively resistant hypervirulent P. aeruginosa (XDR-hvPA). In this study, we investigate its epidemiological characteristics and provide important basis for preventing its dissemination. METHODS: Clinical XDR-PA isolates were collected from January 2018 to January 2023 and identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry; antibiotic susceptibility testing was performed by broth microdilution method, and minimum inhibitory concentrations (MICs) were evaluated. Virulence was evaluated using the Galleria mellonella infection model; molecular characteristics, including resistance genes, virulence genes, and homology, were determined using whole-genome sequencing. RESULTS: A total of 77 XDR-PA strains were collected; 47/77 strains were XDR-hvPA. Patients aged > 60 years showed a significantly higher detection rate of XDR-hvPA than of XDR-non-hvPA. Among the 47 XDR-hvPA strains, 24 strains carried a carbapenemase gene, including blaGES-1 (10/47), blaVIM-2 (6/47), blaGES-14 (4/47), blaIMP-45 (2/47), blaKPC-2 (1/47), and blaNDM-14 (1/47). ExoU, exoT, exoY, and exoS, important virulence factors of PA, were found in 31/47, 47/47, 46/47, and 29/47 strains, respectively. Notably, two XDR-hvPA simultaneously co-carried exoU and exoS. Six serotypes (O1, O4-O7, and O11) were detected; O11 (19/47), O7 (13/47), and O4 (9/47) were the most prevalent. In 2018-2020, O4 and O7 were the most prevalent serotypes; 2021 onward, O11 (16/26) was the most prevalent serotype. Fourteen types of ST were detected, mainly ST235 (14/47), ST1158 (13/47), and ST1800 (7/47). Five global epidemic ST235 XDR-hvPA carried blaGES and showed the MIC value of ceftazidime/avibactam reached the susceptibility breakpoint (8/4 mg/L). CONCLUSIONS: The clinical detection rate of XDR-hvPA is unexpectedly high, particularly in patients aged > 60 years, who are seemingly more susceptible to contracting this infection. Clonal transmission of XDR-hvPA carrying blaGES, which belongs to the global epidemic ST235, was noted. Therefore, the monitoring of XDR-hvPA should be strengthened, particularly for elderly hospitalized patients, to prevent its spread.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Idoso , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/tratamento farmacológico , Proteínas de Bactérias/genética , beta-Lactamases/genética , Sorogrupo , China/epidemiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
10.
Plant Cell Rep ; 43(6): 158, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822833

RESUMO

KEY MESSAGE: Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.


Assuntos
Ciclopentanos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Oxilipinas , Doenças das Plantas , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Saccharum , Ácido Salicílico , Transdução de Sinais , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Saccharum/genética , Saccharum/microbiologia , Transdução de Sinais/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Acetatos/farmacologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Ácido Abscísico/metabolismo , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/patogenicidade
11.
Ecotoxicol Environ Saf ; 270: 115861, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154153

RESUMO

As agents in an emerging technology, Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae) larvae, black soldier fly, have shown exciting potential for degrading antibiotics in organic solid waste, a process for which gut microorganisms play an important role. This study investigated the characteristics of larval gut bacterial communities effected by typical antibiotics. Initially, antibiotics significantly reduced the diversity of gut bacterial species. After 8 days, diversity recovered to similar to that of the control group in the chlortetracycline, tylosin, and sulfamethoxazole groups. Proteobacteria, Firmicutes, and Actinobacteriota were the dominant phyla at the initial BSFL gut. However, after 4 days treatment, the proportion of Actinobacteriota significantly decreased, but Bacteroidota notably increased. During the conversion process, 18, 18, 17, 21, and 19 core genera were present in the chlortetracycline, sulfamethoxazole, tylosin, norfloxacin, and gentamicin groups, respectively. Pseudomonas, Actinomyces, Morganella, Providencia and Klebsiella might be the important genera with extraordinary resistance and degradation to antibiotics. Statistical analyses of COGs showed that antibiotics changed the microbial community functions of BSFL gut. Compared with the control group, (i) the chlortetracycline, sulfamethoxazole, and tylosin groups showed significant increase in the classification functions of transcription, RNA processing and modification,and so on, (ii) the norfloxacin and gentamicin groups showed significant increase in defense mechanisms and other functions. Note that we categorized the response mechanisms of these classification functions to antibiotics into resistance and degradation. This provides a new perspective to deeply understand the joint biodegradation behavior of antibiotics in environments, and serves as an important reference for further development and utilization of microorganisms-assisted larvae for efficient degradation of antibiotics.


Assuntos
Clortetraciclina , Dípteros , Microbioma Gastrointestinal , Animais , Dípteros/fisiologia , Larva , Antibacterianos/farmacologia , Norfloxacino , Tilosina , Bactérias , Sulfametoxazol , Gentamicinas
12.
Pestic Biochem Physiol ; 198: 105747, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225090

RESUMO

Ametoctradin is mainly used to treat plant oomycetes diseases, but the mechanism and resistance risk of ametoctradin in Phytophthora sojae remain unknown. This study determined the ametoctradin sensitivity of 106 P. sojae isolates and found that the frequency distribution of the median effective concentration (EC50) of ametoctradin was unimodal with a mean value of 0.1743 ± 0.0901 µg/mL. Furthermore, ametoctradin-resistant mutants had a substantially lower fitness index compared with that of wild-type isolates. Although ametoctradin did not show cross-resistance to other fungicides, negative cross-resistance to amisulbrom was found. In comparison to sensitive isolates, the control efficacy of ametoctradin to resistant mutants was lower, implying a low to moderate ametoctradin resistance risk in P. sojae. All ametoctradin-resistant mutants contained a S33L point mutation in PsCytb. A system with overexpression of PsCytb in the nucleus was established. When we ectopically overexpressed S33L-harboring PsCytb, P. sojae developed ametoctradin resistance. We hypothesized that the observed negative resistance between ametoctradin and amisulbrom could be attributed to conformational changes in the binding cavity of PsCytb at residues 33 and 220.


Assuntos
Phytophthora , Triazóis , Mutação Puntual , Pirimidinas , Doenças das Plantas/genética
13.
Pestic Biochem Physiol ; 200: 105806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582572

RESUMO

Boscalid, a widely used SDHI fungicide, has been employed in plant disease control for over two decades. However, there is currently no available information regarding its antifungal activity against Sclerotium rolfsii and the potential risk of resistance development in this pathogen. In this study, we evaluated the sensitivity of 100 S. rolfsii strains collected from five different regions in China during 2018-2019 to boscalid using mycelial growth inhibition method and assessed the risk of resistance development. The EC50 values for boscalid ranged from 0.2994 µg/mL to 1.0766 µg/mL against the tested strains, with an average EC50 value of 0.7052 ± 0.1473 µg/mL. Notably, a single peak sensitivity baseline was curved, indicating the absence of any detected resistant strains. Furtherly, 10 randomly selected strains of S. rolfsii were subjected to chemical taming to evaluate its resistance risk to boscalid, resulting in the successful generation of six stable and inheritable resistant mutants. These mutants exhibited significantly reduced mycelial growth, sclerotia production, and virulence compared to their respective parental strains. Cross-resistance tests revealed a correlation between boscalid and flutolanil, benzovindiflupyr, pydiflumetofen, fluindapyr, and thifluzamide; however, no cross-resistance was observed between boscalid and azoxystrobin. Thus, we conclude that the development risk of resistance in S. rolfsii to boscalid is low. Boscalid can be used as an alternative fungicide for controlling peanut sclerotium blight when combined with other fungicides that have different mechanisms of action. Finally, the target genes SDHB, SDHC, and SDHD in S. rolfsii were initially identified, cloned and sequenced to elucidate the mechanism of S. rolfsii resistance to boscalid. Two mutation genotypes were found in the mutants: SDHD-D111H and SDHD-H121Y. The mutants carrying SDHD-H121Y exhibited moderate resistance, while the mutants with SDHD-D111H showed low resistance. These findings contribute to our comprehensive understanding of molecular mechanisms underlying plant pathogens resistance to SDHI fungicides.


Assuntos
Basidiomycota , Compostos de Bifenilo , Fungicidas Industriais , Niacinamida/análogos & derivados , Fungicidas Industriais/farmacologia , Succinato Desidrogenase , Medição de Risco , Doenças das Plantas/microbiologia
14.
Pestic Biochem Physiol ; 202: 105900, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879291

RESUMO

The phytopathogenic oomycete Phytophthora litchii is the culprit behind the devastating disease known as "litchi downy blight", which causes large losses in litchi production. Although fluopimomide exhibits strong inhibitory efficacy against P. litchii, the exact mechanism of resistance is still unknown. The sensitivity of 137 P. litchii isolates to fluopimomide was assessed, and it was discovered that the median effective concentration (EC50) of the fungicide had a unimodal frequency distribution with a mean value of 0.763 ± 0.922 µg/mL. Comparing the resistant mutants to the equivalent parental isolates, the resistance mutants' survival fitness was much lower. While there was no cross-resistance between fluopimomide and other oomycete inhibitors, there is a notable positive cross-resistance between fluopimomide and fluopicolide. According to the thorough investigation, P. litchii had a moderate chance of developing fluopimomide resistance. The point mutations N771S and K847N in the VHA-a of P. litchii (PlVHA-a) were present in the fluopimomide-resistant mutants, and the two point mutations in PlVHA-a conferring fluopimomide resistance were verified by site-directed mutagenesis in the sensitive P. capsici isolate BYA5 and molecular docking.


Assuntos
Fungicidas Industriais , Phytophthora , Mutação Puntual , Phytophthora/efeitos dos fármacos , Phytophthora/genética , Fungicidas Industriais/farmacologia , Morfolinas/farmacologia , Benzamidas , Piridinas
15.
Pestic Biochem Physiol ; 203: 105990, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084767

RESUMO

Rice blast, caused by Magnaporthe oryzae, is a devastating fungal disease worldwide. Pydiflumetofen (Pyd) is a new succinate dehydrogenase inhibitor (SDHI) that exhibited anti-fungal activity against M. oryzae. However, control of rice blast by Pyd and risk of resistance to Pyd are not well studied in this pathogen. The baseline sensitivity of 109 M. oryzae strains to Pyd was determined using mycelial growth rate assay, with EC50 values ranging from 0.291 to 2.1313 µg/mL, and an average EC50 value of 1.1005 ± 0.3727 µg/mL. Totally 28 Pyd-resistant (PydR) mutants with 15 genotypes of point mutations in succinate dehydrogenase (SDH) complex were obtained, and the resistance level could be divided into three categories of very high resistance (VHR), high resistance (HR) and moderate resistance (MR) with the resistance factors (RFs) of >1000, 105.74-986.13 and 81.92-99.48, respectively. Molecular docking revealed that all 15 mutations decreased the binding-force score for the affinity between Pyd and target subunits, which further confirmed that these 15 genotypes of point mutations were responsible for the resistance to Pyd in M. oryzae. There was positive cross resistance between Pyd and other SDHIs, such as fluxapyroxad, penflufen or carboxin, while there was no cross-resistance between Pyd and carbendazim, prochloraz or azoxystrobin in M. oryzae, however, PydR mutants with SdhBP198Q, SdhCL66F or SdhCL66R genotype were still sensitive to the other 3 SDHIs, indicating lack of cross resistance. The results of fitness study revealed that the point mutations in MoSdhB/C/D genes might reduce the hyphae growth and sporulation, but could improve the pathogenicity in M. oryzae. Taken together, the risk of resistance to Pyd might be moderate to high, and it should be used as tank-mixtures with other classes of fungicides to delay resistance development when it is used for the control of rice blast in the field.


Assuntos
Substituição de Aminoácidos , Farmacorresistência Fúngica , Fungicidas Industriais , Succinato Desidrogenase , Succinato Desidrogenase/genética , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Magnaporthe/efeitos dos fármacos , Magnaporthe/genética , Mutação Puntual , Oryza/microbiologia , Ascomicetos
16.
Pestic Biochem Physiol ; 199: 105786, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458686

RESUMO

Ipconazole is a broad-spectrum triazole fungicide that is highly effective against Fusarium pseudograminearum. However, its risk of developing resistance and mechanism are not well understood in F. pseudograminearum. Here, the sensitivities of 101 F. pseudograminearum isolates to ipconazole were investigated, and the average EC50 value was 0.1072 µg/mL. Seven mutants resistant to ipconazole were obtained by fungicide adaption, with all but one showing reduced fitness relative to the parental isolates. Cross-resistance was found between ipconazole and mefentrifluconazole and tebuconazole, but none between ipconazole and pydiflumetofen, carbendazim, fludioxonil, or phenamacril. In summary, these findings suggest that there is a low risk of F. pseudograminearum developing resistance to ipconazole. Additionally, a point mutation, G464S, was seen in FpCYP51B and overexpression of FpCYP51A, FpCYP51B and FpCYP51C was observed in ipconazole-resistant mutants. Assays, including transformation and molecular docking, indicated that G464S conferred ipconazole resistance in F. pseudograminearum.


Assuntos
Fungicidas Industriais , Fusarium , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Fusarium/genética , Desmetilação , Doenças das Plantas
17.
Plant Dis ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902883

RESUMO

The Fusarium head blight (FHB) caused by Fusarium graminearum is a serious fungal disease that can dramatically impact wheat production. At present, control is mainly achieved by the use of chemical fungicides. Hexaconazole (IUPAC name: 2-(2,4-dichlorophenyl)-1-(1,2,4-triazol-1-yl)hexan-2-ol) is a widely used triazole fungicide, but the sensitivity of F. graminearum to this compound has yet to be established. The current study found that the EC50 values of 83 field isolates of F. graminearum ranged between 0.06 and 4.33 µg/mL, with an average EC50 of 0.78 µg/mL. Assessment of four hexaconazole-resistant laboratory mutants of F. graminearum revealed that their mycelial growth, and pathogenicity were reduced compared to their parental isolates, and that asexual reproduction was reduced by resistance to hexaconazole. Meanwhile, the mutants appeared to be more sensitive to abiotic stress associated with SDS, and H2O2, while their tolerance of high concentration of Congo red, and Na+ and K+ increased. Molecular analysis revealed numerous point mutations in the FgCYP51 target genes that resulted in amino acid substitutions, including L92P and N123S in FgCYP51A, as well as M331V, F62L, Q252R, A412V, and V488A in FgCYP51B, and S28L, S256A, V307A, D287G and R515I in FgCYP51C, three of which (S28L, S256A, and V307A) were conserved in all of the resistant mutants. Furthermore, the expression of the FgCYP51 genes in resistant strains was found to be significantly (p < 0.05) reduced compared to their sensitive parental isolates. Positive cross-resistance was found between hexaconazole and metconazole and flutriafol, as well as with the diarylamine fungicide fluazinam, but not with propiconazole, and the phenylpyrrole fungicide fludioxonil, or with tebuconazole, which actually exhibited negative cross-resistance. These results provide valuable insight into resistant mechanisms to triazole fungicides in F. graminearum, as well as the appropriate selection of fungicide combinations for the control of FHB to ensure optimal wheat production.

18.
Plant Dis ; : PDIS07231369RE, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37822099

RESUMO

Black point, a severe global wheat disease, necessitates deploying resistant cultivars for effective control. However, susceptibility remains prevalent among most wheat cultivars. Identifying new sources of resistance and understanding their mechanisms are crucial for breeding resistant cultivars. This study pinpointed black point resistance in an ethyl methane sulfonate (EMS)-mutagenized wheat population of Wanyuanbai 1 (WYB) and analyzed resistant mutants using RNA-Seq. The findings revealed the following: (i) wyb-18, among 10,008 EMS-mutagenized lines, exhibited robust resistance with significantly lower black point incidence under artificial Bipolaris sorokiniana inoculation in 2020 and 2021 (average incidence of 5.2% over 2 years), markedly reduced compared with WYB (50.9%). (ii) wyb-18 kernels displayed black point symptoms at 12 days after inoculation (dai), 3 days later than WYB. At 15 dai, wyb-18 kernels had isolated black spots, unlike WYB kernels, where the entire embryo turned black. (iii) wyb-18 showed heightened antioxidant enzyme activity, including peroxidase, catalase, and superoxide dismutase. (iv) Analysis of 543 differentially expressed genes between wyb-18 and WYB at 9 dai identified enrichment in the MAPK signaling pathway through KEGG analysis. Ten genes in this pathway exhibited upregulated expression, while one was downregulated in wyb-18. Among these genes, PR1, WRKY11, SAPK5, and TraesCS1A02G326800 (chitin recognition protein) consistently showed upregulation in wyb-18, making them potential candidates for black point resistance. These results offer valuable germplasm resources for breeding and novel insights into the mechanisms of black point resistance.

19.
Plant Dis ; 108(2): 348-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37443398

RESUMO

Stalk rot is one of the most destructive and widely distributed diseases in maize plants worldwide. Research on the performance and resistance mechanisms of maize against stem rot is constantly improving. In this study, among 120 inbred maize lines infected by Fusarium graminearum using the injection method, 4 lines (3.33%) were highly resistant to stalk rot, 28 lines (23.33%) were resistant, 57 lines (47.50%) were susceptible, and 31 lines (25.84%) were highly susceptible. The inbred lines 18N10118 and 18N10370 were the most resistant and susceptible with disease indices of 7.5 and 75.6, respectively. Treatment of resistant and susceptible maize inbred seedlings with F. graminearum showed that root hair growth of the susceptible inbred lines was significantly inhibited, and a large number of hyphae attached and adsorbed multiple conidia near the root system. However, the resistant inbred lines were delayed and inconspicuous, with only a few hyphae and spores appearing near the root system. Compared with susceptible inbred lines, resistant maize inbred line seedlings treated with F. graminearum exhibited elevated activities of catalase, phenylalanine ammonia-lyase, polyphenol oxidase, and superoxide dismutase. We identified 153 genes related to disease resistance by transcriptome analysis. The mitogen-activated protein kinase signaling and peroxisome pathways mainly regulated the resistance mechanism of maize inbred lines to F. graminearum infection. These two pathways might play an important role in the disease resistance mechanism, and the function of genes in the two pathways must be further studied, which might provide a theoretical basis for further understanding the molecular resistance mechanism of stalk rot and resistance gene mining.


Assuntos
Resistência à Doença , Fusarium , Resistência à Doença/genética , Zea mays/genética , Fusarium/fisiologia , Perfilação da Expressão Gênica
20.
World J Microbiol Biotechnol ; 40(2): 58, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165488

RESUMO

Bacillus biocontrol agent(s) BCA(s) such as Bacillus cereus, Bacillus thuringiensis and Bacillus subtilis have been widely applied to control insects' pests of plants and pathogenic microbes, improve plant growth, and facilitate their resistance to environmental stresses. In the last decade, researchers have shown that, the application of Bacillus biocontrol agent(s) BCA(s) optimized agricultural production yield, and reduced disease risks in some crops. However, these bacteria encountered various abiotic stresses, among which ultraviolet (UV) radiation severely decrease their efficiency. Researchers have identified several strategies by which Bacillus biocontrol agents resist the negative effects of UV radiation, including transcriptional response, UV mutagenesis, biochemical and artificial means (addition of protective agents). These strategies are governed by distinct pathways, triggered by UV radiation. Herein, the impact of UV radiation on Bacillus biocontrol agent(s) BCA(s) and their mechanisms of resistance were discussed.


Assuntos
Bacillus thuringiensis , Bacillus , Raios Ultravioleta , Bacillus cereus , Bacillus subtilis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA