Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 19(1): 54, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933425

RESUMO

BACKGROUND: Metabolic syndrome (MetS) exacerbates susceptibility to inhalation exposures such as particulate air pollution, however, the mechanisms responsible remain unelucidated. Previously, we determined a MetS mouse model exhibited exacerbated pulmonary inflammation 24 h following AgNP exposure compared to a healthy mouse model. This enhanced response corresponded with reduction of distinct resolution mediators. We hypothesized silver nanoparticle (AgNP) exposure in MetS results in sustained pulmonary inflammation. Further, we hypothesized treatment with resolvin D1 (RvD1) will reduce exacerbations in AgNP-induced inflammation due to MetS. RESULTS: To evaluate these hypotheses, healthy and MetS mouse models were exposed to vehicle (control) or AgNPs and a day later, treated with resolvin D1 (RvD1) or vehicle (control) via oropharyngeal aspiration. Pulmonary lung toxicity was evaluated at 3-, 7-, 14-, and 21-days following AgNP exposure. MetS mice exposed to AgNPs and receiving vehicle treatment, demonstrated exacerbated pulmonary inflammatory responses compared to healthy mice. In the AgNP exposed mice receiving RvD1, pulmonary inflammatory response in MetS was reduced to levels comparable to healthy mice exposed to AgNPs. This included decreases in neutrophil influx and inflammatory cytokines, as well as elevated anti-inflammatory cytokines. CONCLUSIONS: Inefficient resolution may contribute to enhancements in MetS susceptibility to AgNP exposure causing an increased pulmonary inflammatory response. Treatments utilizing specific resolution mediators may be beneficial to individuals suffering MetS following inhalation exposures.


Assuntos
Síndrome Metabólica , Nanopartículas Metálicas , Pneumonia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos , Inflamação/induzido quimicamente , Nanopartículas Metálicas/toxicidade , Camundongos , Pneumonia/induzido quimicamente , Prata/toxicidade
2.
Graefes Arch Clin Exp Ophthalmol ; 260(10): 3293-3302, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35522296

RESUMO

PURPOSE: The study aims to investigate the role of the lipid mediator resolvin D1 (RvD1) in bacterial keratitis in a murine model. METHODS: The effect of RvD1 on Pseudomonas aeruginosa-stimulated human corneal epithelial cells (HCECs) and mouse macrophages and dendritic cells (DCs) was assessed. C57BL/6 mouse corneas were abraded and treated with RvD1 after stimulation with P. aeruginosa, following which cytokine production level in the cornea and drainage lymph nodes was compared with that in controls. Corneal opacity and thickness were assessed using anterior segment photographs, and optical coherence tomography and corneal infiltrates were analyzed using immunohistochemistry for neutrophils. RESULTS: RvD1 significantly inhibited pro-inflammatory cytokine production in HCECs, mouse macrophages, and DCs. Corneal opacity and corneal thickness were reduced, and the development of corneal infiltrates, specifically neutrophils, was also significantly inhibited by RvD1 in response to stimulation with P. aeruginosa. CONCLUSIONS: RvD1 inhibits P. aeruginosa-induced corneal inflammation. This finding supports a potential therapeutic approach for patients with bacterial keratitis.


Assuntos
Lesões da Córnea , Opacidade da Córnea , Infecções Oculares Bacterianas , Ceratite , Infecções por Pseudomonas , Animais , Citocinas , Ácidos Docosa-Hexaenoicos/farmacologia , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Bacterianas/prevenção & controle , Humanos , Ceratite/diagnóstico , Ceratite/tratamento farmacológico , Ceratite/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa
3.
J Neuroinflammation ; 13(1): 61, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26965310

RESUMO

Docosahexaenoic acid (DHA) is an omega-3 (ω-3) long-chain polyunsaturated fatty acid (LCPUFA) relevant for brain function. It has largely been explored as a potential candidate to treat Alzheimer's disease (AD). Clinical evidence favors a role for DHA in the improvement of cognition in very early stages of the AD. In response to stress or damage, DHA generates oxygenated derivatives called docosanoids that can activate the peroxisome proliferator-activated receptor γ (PPARγ). In conjunction with activated retinoid X receptors (RXR), PPARγ modulates inflammation, cell survival, and lipid metabolism. As an early event in AD, inflammation is associated with an excess of amyloid ß peptide (Aß) that contributes to neural insult. Glial cells are recognized to be actively involved during AD, and their dysfunction is associated with the early appearance of this pathology. These cells give support to neurons, remove amyloid ß peptides from the brain, and modulate inflammation. Since DHA can modulate glial cell activity, the present work reviews the evidence about this modulation as well as the effect of docosanoids on neuroinflammation and in some AD models. The evidence supports PPARγ as a preferred target for gene modulation. The effective use of DHA and/or its derivatives in a subgroup of people at risk of developing AD is discussed.


Assuntos
Doença de Alzheimer/patologia , Ácidos Docosa-Hexaenoicos/farmacologia , Neuroglia/efeitos dos fármacos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , PPAR gama/efeitos dos fármacos
4.
Immunopharmacol Immunotoxicol ; 38(2): 61-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26630551

RESUMO

Acute hepatic failure involves in excessive oxidative stress and inflammatory responses, leading to a high mortality due to lacking effective therapy. Resolvin D1 (RvD1), an endogenous lipid mediator derived from polyunsaturated fatty acids, has been shown anti-inflammatory and anti-oxidative actions, however, whether RvD1 has protective effects on hepatic failure remains elusive. In this study, the roles and molecular mechanisms of RvD1 were explored in carbon tetrachloride (CCl4)-induced acute liver injury. Our results showed that RvD1 protected mice against CCl4-induced hepatic damage, as evaluated by reduced aminotransferase activities and malondialdehyde content, elevated glutathione and superoxide dismutase activities, and alleviated hepatic pathological damage. Moreover, RvD1 significantly attenuated serum tumor necrosis factor-α and interleukin-6 levels as well as hepatic myeloperoxidase activity, whereas enhanced serum IL-10 level in CCl4-administered mice. Further, RvD1 markedly up-regulated the expression and activity of heme oxygenase-1 (HO-1). However, inhibition of HO-1 activity reversed the protective effects of RvD1 on CCl4-induced liver injury. These results suggest that RvD1 could effectively prevent CCl4-induced liver injury by inhibition of oxidative stress and inflammation, and the underlying mechanism may be related to up-regulation of HO-1.


Assuntos
Intoxicação por Tetracloreto de Carbono , Ácidos Docosa-Hexaenoicos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/biossíntese , Falência Hepática Aguda , Proteínas de Membrana/biossíntese , Regulação para Cima/efeitos dos fármacos , Animais , Intoxicação por Tetracloreto de Carbono/enzimologia , Intoxicação por Tetracloreto de Carbono/patologia , Intoxicação por Tetracloreto de Carbono/prevenção & controle , Citocinas/biossíntese , Falência Hepática Aguda/enzimologia , Falência Hepática Aguda/patologia , Falência Hepática Aguda/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos
5.
Rep Biochem Mol Biol ; 12(4): 566-574, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39086587

RESUMO

Background: Chronic inflammation is associated with many inflammatory diseases. Specialized pro-resolving mediators (SPMs) are well known for their crucial role in promoting the resolution phase of inflammation and restoring tissue homeostasis. Resolvin D1 (RvD1) is an endogenous omega-3-derived lipid mediator with pro-resolving activity. This study aimed to evaluate the effect of Resolvin D1 (RvD1) on some inflammatory miRNAs (mir-155-5p, miR146a-5p and miR148-3p) and Krüppel-like factors 5 (KLF5) in an LPS-stimulated THP-1 preclinical model of inflammation. Methods: PMA-differentiated THP-1 cells (macrophages) were pre-incubated with or without various concentrations of RvD1 (10, 50, or 100 nM) for 2 h prior to stimulation by 1 µg/ml LPS. Un-stimulated PMA-differentiated THP-1 cells were as the control group. Then, the expression levels of target genes were evaluated by real-time PCR. Results: Compared with untreated macrophages, stimulation with 1 µg/ml LPS increased mRNA expression levels of TNF-α, KLF5, miR-155-5p, miR-146-5p, and miR-148a-3p. When the cells were exposed to various concentrations (10, 50 and 100 nM) of RvD1 for 2 h prior to LPS stimulation, the TNF-α, KLF5, miR-155-5p, miR-146-5p, and miR-148a-3p mRNA expression levels were significantly downregulated in a dose-dependent manner, compared to the LPS group. Conclusions: The results demonstrate that RvD1 can attenuate inflammatory response in LPS-stimulated macrophages. Our data also showed that RvD1 may exert anti-inflammatory effects by inhibiting miR-155-5p, miR-146a-5p, and miR-148-3p.

6.
Mol Immunol ; 158: 35-42, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37104999

RESUMO

PURPOSE: Here, we explored the protective effects of resolvin D1 (RvD1) in Pseudomonas aeruginosa (PA) keratitis. METHODS: C57BL/6 (B6) mice were used as an animal model of PA keratitis. Plate counting and clinical scores were used to assess the severity of the infection and the therapeutic effects of RvD1 in the model. Myeloperoxidase assay was used to detect neutrophil infiltration and activity. Quantitative PCR (qPCR) was used to examine the expression of proflammatory and anti-inflammatory mediators. Immunofluorescence staining and qPCR were performed to identify macrophage polarization. RESULTS: RvD1 treatment alleviated PA keratitis severity by decreasing corneal bacterial load and inhibiting neutrophil infiltration in the mouse model. Furthermore, RvD1 treatment decreased mRNA levels of TNF-α, IFN-γ, IL-1ß, CXCL1, and S100A8/9 while increasing those of IL-1RA, IL-10, and TGF-ß1. RvD1 treatment also reduced the aggregation of M1 macrophages and increased that of M2 macrophages. RvD1 provided an auxiliary effect in gatifloxacin-treated mice with PA keratitis. CONCLUSION: Based on these findings, RvD1 may improve the prognosis of PA keratitis by inhibiting neutrophil recruitment and activity, dampening the inflammatory response, and promoting M2 macrophage polarization. Thus, RvD1 may be a potential complementary therapy for PA keratitis.


Assuntos
Ceratite , Infecções por Pseudomonas , Camundongos , Animais , Pseudomonas aeruginosa , Camundongos Endogâmicos C57BL , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/microbiologia , Ácidos Docosa-Hexaenoicos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia
7.
JVS Vasc Sci ; 4: 100126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045567

RESUMO

Background: Specialized pro-resolving lipid mediators (SPM) such as resolvin D1 (RvD1) attenuate inflammation and exhibit vasculo-protective properties. Methods: We investigated poly-lactic-co-glycolic acid (PLGA)-based nanoparticles (NP), containing a peptide targeted to tissue factor (TF) for delivery of 17R-RvD1 and a synthetic analog 17-R/S-benzo-RvD1 (benzo-RvD1) using in vitro and in vivo models of acute vascular injury. NPs were characterized in vitro by size, drug loading, drug release, TF binding, and vascular smooth muscle cell migration assays. NPs were also characterized in a rat model of carotid angioplasty. Results: PLGA NPs based on a 75/25 lactic to glycolic acid ratio demonstrated optimal loading (507.3 pg 17R-RvD1/mg NP; P = ns) and release of RvD1 (153.1 pg 17R-RvD1/mg NP; P < .05). NPs incorporating the targeting peptide adhered to immobilized TF with greater avidity than NPs with scrambled peptide (50 nM: 41.6 ± 0.52 vs 32.66 ± 0.34; 100 nM: 35.67 ± 0.95 vs 23.5 ± 0.39; P < .05). NPs loaded with 17R-RvD1 resulted in a trend toward blunted vascular smooth muscle cell migration in a scratch assay. In a rat model of carotid angioplasty, 16-fold more NPs were present after treatment with TF-targeted NPs compared with scrambled NPs (P < .01), with a corresponding trend toward higher tissue levels of 17R-RvD1 (P = .06). Benzo-RvD1 was also detectable in arteries treated with targeted NP delivery and accumulated at 10 times higher levels than NP loaded with 17R-RvD1. There was a trend toward decreased CD45 immunostaining in vessels treated with NP containing benzo-RvD1 (0.76 ± 0.38 cells/mm2 vs 122.1 ± 22.26 cells/mm2; P = .06). There were no significant differences in early arterial inflammatory and cytokine gene expression by reverse transcription-polymerase chain reaction. Conclusions: TF-targeting peptides enhanced NP-mediated delivery of SPM to injured artery. TF-targeted delivery of SPMs may be a promising therapeutic approach to attenuate the vascular injury response.

8.
Ann Transl Med ; 9(19): 1498, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34805360

RESUMO

BACKGROUND: To investigate the protective effect of resolvin D1 (RvD1) on aortic dissection (AD) in mice and explore the related mechanisms. METHODS: Mice were randomly divided into a blank group, model group, and RvD1 group. The RvD1 and model groups were administered 0.4% ß-aminopropionitrile (BAPN) solution, while the blank group was administered distilled water. When the experiment began, whether mice had AD was determined by echocardiogram. The RvD1 group was also administered RvD1 (30 µg/kg), while the model and blank groups were administered saline intraperitoneally. After 21 d, body weight trend and survival rate in the three groups were compared. The diameter of the ascending aorta of mice was detected by echocardiography. Then, the mice were sacrificed, and histopathological staining procedures were performed. Enzyme-linked immunosorbent assay (ELISA) was used to detect cytokines and chemokines in blood and tissue, respectively. RESULTS: At 21 d, there was no statistically significant difference in body weight between three groups (P>0.05). The survival rate showed a significant difference between the RvD1 and model group (P<0.05). Echocardiography revealed that compared with the RvD1 and blank groups, aortic dilatation was significant in the model group. Pathological staining showed that the destruction of the aortic wall structure and inflammatory cell infiltration were more noticeable in the model group than in the RvD1 group. A slight disintegration of elastic fibers and collagen in the aorta was observed in the RvD1 group, and the aortic structure was clear. The results of ELISA showed that the inflammatory factors levels in the RvD1 group, although higher than those in blank group, were significantly decreased compared with the model group. The ELISA results of AD tissue showed that at 21 d, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in the aorta were significantly decreased in the RvD1 group compared with the model group (P<0.05). CONCLUSIONS: Administration of RvD1 significantly delayed aortic dilation and disintegration and inhibited local macrophage and neutrophil infiltration in the early stages of aortic injury. Moreover, RvD1 significantly downregulated the expression of cytokines and chemokines in aortic tissues and serum and improved aortic remodeling.

9.
Front Immunol ; 9: 2345, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459754

RESUMO

Chronic obstructive pulmonary disease (COPD) is a leading cause of disability and death world-wide, where chronic inflammation accelerates lung function decline. Pathological inflammation is worsened by chronic bacterial lung infections and susceptibility to recurrent acute exacerbations of COPD (AECOPD), typically caused by viral and/or bacterial respiratory pathogens. Despite ongoing efforts to reduce AECOPD rates with inhaled corticosteroids, COPD patients remain at heightened risk of developing serious lung infections/AECOPD, frequently leading to hospitalization and infection-dependent delirium. Here, we review emerging mechanisms into why COPD patients are susceptible to chronic bacterial infections and highlight dysregulated inflammation and production of reactive oxygen species (ROS) as central causes. This underlying chronic infection leaves COPD patients particularly vulnerable to acute viral infections, which further destabilize host immunity to bacteria. The pathogeneses of bacterial and viral exacerbations are significant as clinical symptoms are more severe and there is a marked increase in neutrophilic inflammation and tissue damage. AECOPD triggered by a bacterial and viral co-infection increases circulating levels of the systemic inflammatory marker, serum amyloid A (SAA). SAA is a functional agonist for formyl peptide receptor 2 (FPR2/ALX), where it promotes chemotaxis and survival of neutrophils. Excessive levels of SAA can antagonize the protective actions of FPR2/ALX that involve engagement of specialized pro-resolving mediators, such as resolvin-D1. We propose that the anti-microbial and anti-inflammatory actions of specialized pro-resolving mediators, such as resolvin-D1 should be harnessed for the treatment of AECOPD that are complicated by the co-pathogenesis of viruses and bacteria.


Assuntos
Infecções Bacterianas/etiologia , Infecções Bacterianas/metabolismo , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/metabolismo , Superinfecção , Viroses/etiologia , Viroses/metabolismo , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Biomarcadores , Suscetibilidade a Doenças , Humanos , Mediadores da Inflamação/metabolismo , Redes e Vias Metabólicas , Oxidantes/metabolismo , Viroses/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA