Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Magn Reson Med ; 79(3): 1730-1735, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28593709

RESUMO

PURPOSE: Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal. METHODS: A 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool. RESULTS: The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM. CONCLUSIONS: The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento/fisiologia , Respiração , Algoritmos , Humanos , Fígado/diagnóstico por imagem
2.
Int J Comput Assist Radiol Surg ; 17(10): 1751-1764, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35639202

RESUMO

PURPOSE: Due to respiratory motion, precise tracking of lung nodule movement is a persistent challenge for guiding percutaneous lung biopsy during image-guided intervention. We developed an automated image-guided system incorporating effective and robust tracking algorithms to address this challenge. Accurate lung motion prediction and personalized image-guided intervention are the key technological contributions of this work. METHODS: A patient-specific respiratory motion model is developed to predict pulmonary movements of individual patients. It is based on the relation between the artificial 4D CT and corresponding positions tracked by position sensors attached on the chest using an electromagnetic (EM) tracking system. The 4D CT image of the thorax during breathing is calculated through deformable registration of two 3D CT scans acquired at inspiratory and expiratory breath-hold. The robustness and accuracy of the image-guided intervention system were assessed on a static thorax phantom under different clinical parametric combinations. RESULTS: Real 4D CT images of ten patients were used to evaluate the accuracy of the respiratory motion model. The mean error of the model in different breathing phases was 1.59 ± 0.66 mm. Using a static thorax phantom, we achieved an average targeting accuracy of 3.18 ± 1.2 mm across 50 independent tests with different intervention parameters. The positive results demonstrate the robustness and accuracy of our system for personalized lung cancer intervention. CONCLUSIONS: The proposed system integrates a patient-specific respiratory motion compensation model to reduce the effect of respiratory motion during percutaneous lung biopsy and help interventional radiologists target the lesion efficiently. Our preclinical studies indicate that the image-guided system has the ability to accurately predict and track lung nodules of individual patients and has the potential for use in the diagnosis and treatment of early stage lung cancer.


Assuntos
Tomografia Computadorizada Quadridimensional , Neoplasias Pulmonares , Algoritmos , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Movimento (Física) , Movimento , Imagens de Fantasmas , Respiração
3.
Comput Biol Med ; 123: 103913, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32768049

RESUMO

Respiration-introduced tumor location uncertainty is a challenge in lung percutaneous interventions, especially for the respiratory motion estimation of the tumor and surrounding vessel structures. In this work, a local motion modeling method is proposed based on whole-chest computed tomography (CT) and CT-fluoroscopy (CTF) scans. A weighted sparse statistical modeling (WSSM) method that can accurately capture location errors for each landmark point is proposed for lung motion prediction. By varying the sparse weight coefficients of the WSSM method, newly input motion information is approximately represented by a sparse linear combination of the respiratory motion repository and employed to serve as prior knowledge for the following registration process. We have also proposed an adaptive motion prior-based registration method to improve the motion prediction accuracy of the motion model in the region of interest (ROI). This registration method adopts a B-spline scheme to interactively weight the relative influence of the prior knowledge, model surface and image intensity information by locally controlling the deformation in the CTF image region. The proposed method has been evaluated on 15 image pairs between the end-expiratory (EE) and end-inspiratory (EI) phases and 31 four-dimensional CT (4DCT) datasets. The results reveal that the proposed WSSM method achieved a better motion prediction performance than other existing lung statistical motion modeling methods, and the motion prior-based registration method can generate more accurate local motion information in the ROI.


Assuntos
Neoplasias Pulmonares , Movimento , Algoritmos , Tomografia Computadorizada Quadridimensional , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Movimento (Física) , Respiração
4.
Int J Comput Assist Radiol Surg ; 15(8): 1279-1290, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32347465

RESUMO

PURPOSE: Lung biopsy is currently the most effective procedure for cancer diagnosis. However, respiration-induced location uncertainty presents a challenge in precise lung biopsy. To reduce the medical image requirements for motion modelling, in this study, local lung motion information in the region of interest (ROI) is extracted from whole chest computed tomography (CT) and CT-fluoroscopy scans to predict the motion of potentially cancerous tissue and important vessels during the model-driven lung biopsy process. METHODS: The motion prior of the ROI was generated via a sparse linear combination of a subset of motion information from a respiratory motion repository, and a weighted sparse-based statistical model was used to preserve the local respiratory motion details. We also employed a motion prior-based registration method to improve the motion estimation accuracy in the ROI and designed adaptive variable coefficients to interactively weigh the relative influence of the prior knowledge and image intensity information during the registration process. RESULTS: The proposed method was applied to ten test subjects for the estimation of the respiratory motion field. The quantitative analysis resulted in a mean target registration error of 1.5 (0.8) mm and an average symmetric surface distance of 1.4 (0.6) mm. CONCLUSIONS: The proposed method shows remarkable advantages over traditional methods in preserving local motion details and reducing the estimation error in the ROI. These results also provide a benchmark for lung respiratory motion modelling in the literature.


Assuntos
Pulmão/patologia , Modelos Estatísticos , Movimentos dos Órgãos/fisiologia , Respiração , Algoritmos , Biópsia , Humanos , Pulmão/diagnóstico por imagem , Cintilografia , Tomografia Computadorizada por Raios X/métodos
5.
Biomed Phys Eng Express ; 6(4): 045015, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33194224

RESUMO

An MR-Linac can provide motion information of tumour and organs-at-risk before, during, and after beam delivery. However, MR imaging cannot provide real-time high-quality volumetric images which capture breath-to-breath variability of respiratory motion. Surrogate-driven motion models relate the motion of the internal anatomy to surrogate signals, thus can estimate the 3D internal motion from these signals. Internal surrogate signals based on patient anatomy can be extracted from 2D cine-MR images, which can be acquired on an MR-Linac during treatment, to build and drive motion models. In this paper we investigate different MRI-derived surrogate signals, including signals generated by applying principal component analysis to the image intensities, or control point displacements derived from deformable registration of the 2D cine-MR images. We assessed the suitability of the signals to build models that can estimate the motion of the internal anatomy, including sliding motion and breath-to-breath variability. We quantitatively evaluated the models by estimating the 2D motion in sagittal and coronal slices of 8 lung cancer patients, and comparing them to motion measurements obtained from image registration. For sagittal slices, using the first and second principal components on the control point displacements as surrogate signals resulted in the highest model accuracy, with a mean error over patients around 0.80 mm which was lower than the in-plane resolution. For coronal slices, all investigated signals except the skin signal produced mean errors over patients around 1 mm. These results demonstrate that surrogate signals derived from 2D cine-MR images, including those generated by applying principal component analysis to the image intensities or control point displacements, can accurately model the motion of the internal anatomy within a single sagittal or coronal slice. This implies the signals should also be suitable for modelling the 3D respiratory motion of the internal anatomy.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Respiração , Idoso , Algoritmos , Diafragma/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Imagens de Fantasmas , Análise de Componente Principal , Radioterapia Guiada por Imagem/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos
6.
Med Phys ; 44(6): 2066-2076, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28369900

RESUMO

PURPOSE: The aim of this study was to evaluate a surrogate-driven motion model based on four-dimensional computed tomography that is able to predict CT volumes corresponding to arbitrary respiratory phases. Furthermore, the comparison of three different driving surrogates is examined and the feasibility of using the model for 4D dose re-calculation will be discussed. METHODS: The study is based on repeated 4DCTs of twenty patients treated for bronchial carcinoma and metastasis. The motion model was estimated from the planning 4DCT through deformable image registration. To predict a certain phase of a follow-up 4DCT, the model considers inter-fractional variations (baseline correction) and intra-fractional respiratory parameters (amplitude and phase) derived from surrogates. The estimated volumes resulting from the model were compared to ground-truth clinical 4DCTs using absolute HU differences in the lung region and landmarks localized using the Scale Invariant Feature Transform. Finally, the γ-index was used to evaluate the dosimetric effects of the intensity differences measured between the estimated and the ground-truth CT volumes. RESULTS: The results show absolute HU differences between estimated and ground-truth images with median value (± standard deviation) of (61.3 ± 16.7) HU. Median 3D distances, measured on about 400 matching landmarks in each volume, were (2.9 ± 3.0) mm. 3D errors up to 28.2 mm were found for CT images with artifacts or reduced quality. Pass rates for all surrogate approaches were above 98.9% with a γ-criterion of 2%/2 mm. CONCLUSION: The results depend mainly on the image quality of the initial 4DCT and the deformable image registration. All investigated surrogates can be used to estimate follow-up 4DCT phases, however, uncertainties decrease for volumetric approaches. Application of the model for 4D dose calculations is feasible.


Assuntos
Tomografia Computadorizada Quadridimensional , Neoplasias Pulmonares/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador , Artefatos , Humanos , Movimento (Física) , Radiometria , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA