Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Exp Eye Res ; 207: 108571, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33844961

RESUMO

Glaucoma is a collection of diseases that lead to an irreversible vision loss due to damage of retinal ganglion cells (RGCs). Although the underlying events leading to RGC death are not fully understood, recent research efforts are beginning to define the genetic changes that play a critical role in the initiation and progression of glaucomatous injury and RGC death. Several genetic and experimental animal models have been developed to mimic glaucomatous neurodegeneration. These models differ in many respects but all result in the loss of RGCs. Assessing transcriptional changes across different models could provide a more complete perspective on the molecular drivers of RGC degeneration. For the past several decades, changes in the retinal transcriptome during neurodegeneration process were defined using microarray methods, RNA sequencing and now single cell RNA sequencing. It is understood that these methods have strengths and weaknesses due to technical differences and variations in the analytical tools used. In this review, we focus on the use of transcriptome-wide expression profiling of the changes occurring as RGCs are lost across different glaucoma models. Commonalities of optic nerve crush and glaucoma-induced neurodegeneration are identified and discussed.


Assuntos
Modelos Animais de Doenças , Glaucoma/patologia , Degeneração Neural/patologia , Traumatismos do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Transcriptoma/genética , Animais , Proteínas do Olho/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glaucoma/genética , Camundongos , Traumatismos do Nervo Óptico/genética , Análise de Sequência de RNA , Transdução de Sinais/fisiologia , Regulação para Cima
2.
Biochem Biophys Res Commun ; 521(2): 471-477, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31672273

RESUMO

Diseases of the retinal ganglion cells (RGCs) are an important cause of blindness, yet the light response of individual RGCs is difficult to assess in vivo, particularly in mammals, due to a lack of effective methods. We report a simple in vivo platform for imaging the light response of mouse RGCs based on a fluorescent reporter-tagged enhanced synaptic activity-responsive element (E-SARE) that mediates neuronal activity-dependent gene transcription. When E-SARE-driven d2Venus, packaged into an AAV vector, was injected intravitreally, light-responsive retinal neurons expressing d2Venus were visible at single-cell resolution using confocal ophthalmoscopy. Immunohistological assessment identified the majority of these cells as RGCs. In a murine model of RGC injury, the number of d2Venus-positive cells was correlated with the amplitude of light-induced responses and with visual acuity, measured electrophysiologically at the visual cortex, indicating that the vector can be used as a tool to assess visual function in RGCs. The platform described herein allows a simple in vivo assessment of RGC function, which should help basic research into the mechanisms of RGC death and the development of treatments for diseases involving the RGCs.


Assuntos
Diagnóstico por Imagem/métodos , Luz , Neurônios/fisiologia , Doenças Retinianas/diagnóstico por imagem , Células Ganglionares da Retina/fisiologia , Animais , Dependovirus/genética , Camundongos , Regiões Promotoras Genéticas , Transcrição Gênica
3.
J Digit Imaging ; 33(5): 1352-1363, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32705432

RESUMO

Optic nerve crush in mouse model is widely used for investigating the course following retinal ganglion cell (RGCs) injury. Manual cell counting from ß-III tubulin stained microscopic images has been routinely performed to monitor RGCs after an optic nerve crush injury, but is time-consuming and prone to observer variability. This paper describes an automatic technique for RGC identification. We developed and validated (i) a sensitive cell candidate segmentation scheme and (ii) a classifier that removed false positives while retaining true positives. Two major contributions were made in cell candidate segmentation. First, a homomorphic filter was designed to adjust for the inhomogeneous illumination caused by uneven penetration of ß-III tubulin antibody. Second, the optimal segmentation parameters for cell detection are highly image-specific. To address this issue, we introduced an offline-online parameter tuning approach. Offline tuning optimized model parameters based on training images and online tuning further optimized the parameters at the testing stage without needing access to the ground truth. In the cell identification stage, 31 geometric, statistical and textural features were extracted from each segmented cell candidate, which was subsequently classified as true or false positives by support vector machine. The homomorphic filter and the online parameter tuning approach together increased cell recall by 28%. The entire pipeline attained a recall, precision and coefficient of determination (r2) of 85.3%, 97.1% and 0.994. The availability of the proposed pipeline will allow efficient, accurate and reproducible RGC quantification required for assessing the death/survival of RGCs in disease models.


Assuntos
Células Ganglionares da Retina , Animais , Contagem de Células , Camundongos , Microscopia de Fluorescência , Compressão Nervosa , Traumatismos do Nervo Óptico
4.
Genet Med ; 21(10): 2345-2354, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31000793

RESUMO

PURPOSE: Primary open-angle glaucoma (POAG) is the leading cause of irreversible blindness worldwide and mutations in known genes can only explain 5-6% of POAG. This study was conducted to identify novel POAG-causing genes and explore the pathogenesis of this disease. METHODS: Exome sequencing was performed in a Han Chinese cohort comprising 398 sporadic cases with POAG and 2010 controls, followed by replication studies by Sanger sequencing. A heterozygous Ramp2 knockout mouse model was generated for in vivo functional study. RESULTS: Using exome sequencing analysis and replication studies, we identified pathogenic variants in receptor activity-modifying protein 2 (RAMP2) within three genetically diverse populations (Han Chinese, German, and Indian). Six heterozygous RAMP2 pathogenic variants (Glu39Asp, Glu54Lys, Phe103Ser, Asn113Lysfs*10, Glu143Lys, and Ser171Arg) were identified among 16 of 4763 POAG patients, whereas no variants were detected in any exon of RAMP2 in 10,953 control individuals. Mutant RAMP2s aggregated in transfected cells and resulted in damage to the AM-RAMP2/CRLR-cAMP signaling pathway. Ablation of one Ramp2 allele led to cAMP reduction and retinal ganglion cell death in mice. CONCLUSION: This study demonstrated that disruption of RAMP2/CRLR-cAMP axis could cause POAG and identified a potential therapeutic intervention for POAG.


Assuntos
Glaucoma de Ângulo Aberto/genética , Proteína 2 Modificadora da Atividade de Receptores/genética , Animais , Povo Asiático , Células COS , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , China , Chlorocebus aethiops , Estudos de Coortes , AMP Cíclico/genética , Predisposição Genética para Doença/genética , Glaucoma de Ângulo Aberto/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Sequenciamento do Exoma/métodos
5.
Exp Eye Res ; 185: 107671, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31108056

RESUMO

Through the paracrine effects of stem cells, including the secretion of neurotrophic, immunomodulatory, and anti-apoptotic factors, cell-based therapies offer a new all-encompassing approach to treatment of neurodegenerative diseases. In this study, we used physically separated co-cultures of porcine neuroretina (NR) and human mesenchymal stem cells (MSC) to evaluate the MSC paracrine neuroprotective effects on NR degeneration. NR explants were obtained from porcine eyes and cultured alone or co-cultured with commercially available MSCs from Valladolid (MSCV; Citospin S.L.; Valladolid, Spain), currently used for several approved treatments. Cultures were maintained for 72 h. MSC surface markers were evaluated before and after co-culture with NRs. Culture supernatants were collected and the concentration of brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial-derived neurotrophic factor (GDNF) were determined by enzyme-linked immunosorbent assays. NR sections were stained by haematoxylin/eosin or immunostained for terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), glial fibrillary acidic protein, ß-tubulin III, and neuronal nuclei marker. NR morphology, morphometry, nuclei count, apoptosis rate, retinal ganglion cells, and glial cell activation were evaluated. Treatment effects were statistically analysed by parametric or non-parametric tests. The MSCs retained stem cell surface markers after co-culture with NR. BDNF and CNTF concentrations in NR-MSCV co-cultures were higher than other experimental conditions at 72 h (p < 0.05), but no GDNF was detected. NR general morphology, total thickness, and cell counts were broadly preserved in co-cultures, and the apoptosis rate determined by TUNEL assay was lower than for NR monocultures (all p < 0.05). Co-cultures with MSCV also protected retinal ganglion cells from degenerative changes and reduced reactive gliosis (both p < 0.05). In this in vitro model of spontaneous NR degeneration, the presence of co-cultured MSCs retarded neuroglial degeneration. This effect was associated with elevated concentrations of the neurotrophic factors BDNF and CNTF. Our data suggest that the paracrine secretion of these, and possibly other molecules, are a potential resource for the treatment of several neuroretinal diseases.


Assuntos
Células-Tronco Mesenquimais/citologia , Neuroproteção/fisiologia , Comunicação Parácrina/fisiologia , Retina/citologia , Degeneração Retiniana/prevenção & controle , Animais , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/fisiologia , Fator Neurotrófico Ciliar/metabolismo , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Retina/metabolismo , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/metabolismo , Suínos , Tubulina (Proteína)/metabolismo
6.
Exp Eye Res ; 171: 54-61, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29526794

RESUMO

Optic neuropathies such as glaucoma are characterized by the degeneration of retinal ganglion cells (RGCs) and the irreversible loss of vision. In these diseases, focal axon injury triggers a propagating axon degeneration and, eventually, cell death. Previous work by us and others identified dual leucine zipper kinase (DLK) and JUN N-terminal kinase (JNK) as key mediators of somal cell death signaling in RGCs following axonal injury. Moreover, others have shown that activation of the DLK/JNK pathway contributes to distal axonal degeneration in some neuronal subtypes and that this activation is dependent on the adaptor protein, sterile alpha and TIR motif containing 1 (SARM1). Given that SARM1 acts upstream of DLK/JNK signaling in axon degeneration, we tested whether SARM1 plays a similar role in RGC somal apoptosis in response to optic nerve injury. Using the mouse optic nerve crush (ONC) model, our results show that SARM1 is critical for RGC axonal degeneration and that axons rescued by SARM1 deficiency are electrophysiologically active. Genetic deletion of SARM1 did not, however, prevent DLK/JNK pathway activation in RGC somas nor did it prevent or delay RGC cell death. These results highlight the importance of SARM1 in RGC axon degeneration and suggest that somal activation of the DLK/JNK pathway is activated by an as-yet-unidentified SARM1-independent signal.


Assuntos
Proteínas do Domínio Armadillo/fisiologia , Axônios/metabolismo , Proteínas do Citoesqueleto/fisiologia , Modelos Animais de Doenças , Traumatismos do Nervo Óptico/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Apoptose/fisiologia , Axônios/patologia , Contagem de Células , Sobrevivência Celular , Eletrofisiologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compressão Nervosa , Traumatismos do Nervo Óptico/patologia , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia
7.
Adv Exp Med Biol ; 1074: 351-357, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721963

RESUMO

c-Jun N-terminal kinase (JNK), a member of stress-induced mitogen-activated protein (MAP) kinase family, has been shown to modulate a variety of biological processes associated with neurodegenerative pathology of the retina. In particular, various retinal cell culture and animal models related to glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa indicate that JNK signaling may contribute to disease pathogenesis. This mini-review discusses the impact of JNK signaling in retinal disease, with a focus on retinal ganglion cells (RGCs), photoreceptor cells, retinal pigment epithelial (RPE) cells, and animal studies, with particular attention to modulation of JNK signaling as a potential therapeutic target for the treatment of retinal disease.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Sistema de Sinalização das MAP Quinases , Degeneração Retiniana/enzimologia , Transtornos da Visão/enzimologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Glaucoma/enzimologia , Glaucoma/genética , Glaucoma/fisiopatologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/deficiência , Degeneração Macular/enzimologia , Degeneração Macular/genética , Degeneração Macular/fisiopatologia , Camundongos , Terapia de Alvo Molecular , Células Fotorreceptoras de Vertebrados/enzimologia , Células Fotorreceptoras de Vertebrados/fisiologia , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/fisiologia , Transtornos da Visão/genética , Transtornos da Visão/terapia
8.
Cell Mol Neurobiol ; 37(2): 361-369, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27193103

RESUMO

Retinal ganglion cell (RGC) injury is one of the important pathological features of diabetes-induced retinal neurodegeneration. Increasing attention has been paid to find strategies for protecting against RGC injury. Long noncoding RNAs (lncRNAs) have emerged as the key regulators of many cell functions. Here, we show that Sox2OT expression is significantly down-regulated in the retinas of STZ-induced diabetic mice and in the RGCs upon high glucose or oxidative stress. SOX2OT knockdown protects RGCs against high glucose-induced injury in vitro. Moreover, Sox2OT knockdown plays a neuroprotective role in diabetes-related retinal neurodegeneration in vivo. Sox2OT knockdown could regulate oxidative stress response in RGCs and diabetic mouse retinas. Sox2OT knockdown plays an anti-oxidative role via regulating NRF2/HO-1 signaling activity. Taken together, Sox2OT knockdown may be a therapeutic strategy for the prevention and treatment of diabetes-induced retinal neurodegeneration.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Técnicas de Silenciamento de Genes , Glucose/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/patologia
9.
Biochem J ; 473(24): 4609-4627, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27754889

RESUMO

The oncoprotein SET/I2PP2A (protein phosphatase 2A inhibitor 2) participates in various cellular mechanisms such as transcription, cell cycle regulation and cell migration. SET is also an inhibitor of the serine/threonine phosphatase PP2A, which is involved in the regulation of cell homeostasis. In zebrafish, there are two paralogous set genes that encode Seta (269 amino acids) and Setb (275 amino acids) proteins which share 94% identity. We show here that seta and setb are similarly expressed in the eye, the otic vesicle, the brain and the lateral line system, as indicated by in situ hybridization labeling. Whole-mount immunofluorescence analysis revealed the expression of Seta/b proteins in the eye retina, the olfactory pit and the lateral line neuromasts. Loss-of-function studies using antisense morpholino oligonucleotides targeting both seta and setb genes (MOab) resulted in increased apoptosis, reduced cell proliferation and morphological defects. The morphant phenotypes were partially rescued when MOab was co-injected with human SET mRNA. Knockdown of setb with a transcription-blocking morpholino oligonucleotide (MOb) resulted in phenotypic defects comparable with those induced by setb gRNA (guide RNA)/Cas9 [CRISPR (clustered regularly interspaced short palindromic repeats)-associated 9] injections. In vivo labeling of hair cells showed a significantly decreased number of neuromasts in MOab-, MOb- and gRNA/Cas9-injected embryos. Microarray analysis of MOab morphant transcriptome revealed differential expression in gene networks controlling transcription in the sensory organs, including the eye retina, the ear and the lateral line. Collectively, our results suggest that seta and setb are required during embryogenesis and play roles in the zebrafish sensory system development.


Assuntos
Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Encéfalo/embriologia , Encéfalo/metabolismo , Embrião não Mamífero/metabolismo , Olho/embriologia , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
10.
Korean J Physiol Pharmacol ; 19(2): 167-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25729279

RESUMO

A retinal prosthesis is being developed for the restoration of vision in patients with retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Determining optimal electrical stimulation parameters for the prosthesis is one of the most important elements for the development of a viable retinal prosthesis. Here, we investigated the effects of different charge-balanced biphasic pulses with regard to their effectiveness in evoking retinal ganglion cell (RGC) responses. Retinal degeneration (rd1) mice were used (n=17). From the ex-vivo retinal preparation, retinal patches were placed ganglion cell layer down onto an 8×8 multielectrode array (MEA) and RGC responses were recorded while applying electrical stimuli. For asymmetric pulses, 1st phase of the pulse is the same with symmetric pulse but the amplitude of 2nd phase of the pulse is less than 10 µA and charge balanced condition is satisfied by lengthening the duration of the pulse. For intensities (or duration) modulation, duration (or amplitude) of the pulse was fixed to 500 µs (30 µA), changing the intensities (or duration) from 2 to 60 µA (60 to 1000 µs). RGCs were classified as response-positive when PSTH showed multiple (3~4) peaks within 400 ms post stimulus and the number of spikes was at least 30% more than that for the immediate pre-stimulus 400 ms period. RGC responses were well modulated both with anodic and cathodic phase-1st biphasic pulses. Cathodic phase-1st pulses produced significantly better modulation of RGC activity than anodic phase-1st pulses regardless of symmetry of the pulse.

11.
J Neurochem ; 129(6): 966-79, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24611815

RESUMO

Restoration of correct neural activity following central nervous system (CNS) damage requires the replacement of degenerated axons with newly outgrowing, functional axons. Unfortunately, spontaneous regeneration is largely lacking in the adult mammalian CNS. In order to establish successful regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model, we were able to show that broad-spectrum MMP inhibition reduces axon outgrowth of mouse retinal ganglion cells (RGCs), implicating MMPs as beneficial factors in axonal regeneration. Additional studies, using more specific MMP inhibitors and MMP-deficient mice, disclosed that both MMP-2 and MT1-MMP, but not MMP-9, are involved in this process. Furthermore, administration of a novel antibody to MT1-MMP that selectively blocks pro-MMP-2 activation revealed a functional co-involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP-2 and MT1-MMP in RGC axons and glial cells. Finally, results from combined inhibition of MMP-2 and ß1-integrin were suggestive for a functional interaction between these molecules. Overall, our data indicate MMP-2 and MT1-MMP as promising axonal outgrowth-promoting molecules. Axonal regeneration in the central nervous system is lacking in adult mammals, thereby impeding recovery from injury to the nervous system. Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent proteases that were sporadically reported to influence axon outgrowth. Inhibition of specific MMPs reduced neurite outgrowth from mouse retinal explants. Our data indicate MMP-2 and MT1-MMP as promising axonal outgrowth-promoting molecules and show a possible link between MMP-2 and ß1-integrin in axon outgrowth.


Assuntos
Axônios/fisiologia , Metaloproteinase 2 da Matriz/fisiologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz Associadas à Membrana/fisiologia , Células Ganglionares da Retina/fisiologia , Animais , Anticorpos Bloqueadores/farmacologia , Axônios/efeitos dos fármacos , Gelatinases/farmacologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Integrina beta1/farmacologia , Integrina beta1/fisiologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/enzimologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
12.
Heliyon ; 10(17): e36673, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281571

RESUMO

Spiking networks, the third generation of neural networks, are presented as low-power consumption machines with higher cognitive ability, one of the main concerns in intelligence machines. In fact, neuromorphic systems are hardware implementations of spiking networks with minimum resource, area, and power consumption while preserve maximum working frequency. Here, the focus is on the digital implementation of Retinal Ganglion Cell (RGC) based on the linear approximation of non-linear terms which is called Linear Retinal Ganglion Cell (LRGC). The low-cost hardware design of biological cells is acceptable when the digital model of the cell has the same phase and time domain behavior as the original model and follows the dynamic behavior of the original model accurately, which is discussed and confirmed with different analyzes in this paper. The low-cost hardware design of biological cells allows the optimal implementation of a neural population on the hardware, provided that the collective behavior of the digital model matches the original model which is approved by the large-scale simulation of RGC and LRGC models. Cognitive processes are performed in the nervous system at a very low cost, which neuromorphic systems are trying to achieve this important. In this regard, the behavior of RGC and LRGC models in the reconstruction of the image through the retina pathway was examined and a high agreement between the performance of the two models was achieved. Finally, the high functional compatibility of RGC, LRGC models proves that the proposed model is a good candidate of the main model in neuromorphic systems with low hardware cost.

13.
J Comp Neurol ; 532(8): e25661, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39139013

RESUMO

Vision plays a crucial role in the survival of animals, and the visual system has particularly selectively evolved in response to the visual environment, ecological niche, and species habitats in vertebrate species. To date, a horizontal streak of retinal ganglion cell (RGC) distribution pattern is observed across mammal species. Here, we report that the giant panda's vertically oriented visual streak, combined with current evidence of the animal's forward-placed eyes, ocular structure, and retinal neural topographic distribution patterns, presents the emergence of a well-adapted binocular visual system. Our results suggest that the giant panda may use a unique way to processing binocular visual information. Results of mathematical simulation are in favor of this hypothesis. The topographic distribution properties of RGCs reported here could be essential for understanding the visual adaptation and evolution of this living fossil.


Assuntos
Células Ganglionares da Retina , Ursidae , Animais , Células Ganglionares da Retina/citologia , Ursidae/anatomia & histologia , Ursidae/fisiologia , Retina/citologia , Retina/anatomia & histologia
14.
Front Mol Neurosci ; 16: 1149024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547921

RESUMO

Purified Retinal Ganglion Cells (RGCs) for in vitro study have been a valuable tool in the study of neural regeneration and in the development of therapies to treat glaucoma. Traditionally, RGCs have been isolated from early postnatal rats and mice, and more recently from human in vitro derived retinal organoids using a two-step immunopanning technique based upon the expression of Thy-1. This technique, however, limits the time periods from which RGCs can be isolated, missing the earliest born RGCs at which time the greatest stage of axon growth occurs, as well as being limited in its use with models of retinal degeneration as Thy-1 is downregulated following injury. While fluorescence associated cell sorting (FACS) in combination with new optogenetically labeled RGCs would be able to overcome this limitation, the use of traditional FACS sorters has been limited to genomic and proteomic studies, as RGCs have little to no survival post-sorting. Here we describe a new method for RGC isolation utilizing a combined immunopanning-fluorescence associated cell sorting (IP-FACS) protocol that initially depletes macrophages and photoreceptors, using immunopanning to enrich for RGCs before using low-pressure FACS to isolate these cells. We demonstrate that RGCs isolated via IP-FACS when compared to RGCs isolated via immunopanning at the same age have similar purity as measured by antibody staining and qRT-PCR; survival as measured by live dead staining; neurite outgrowth; and electrophysiological properties as measured by calcium release response to glutamate. Finally, we demonstrate the ability to isolate RGCs from early embryonic mice prior to the expression of Thy-1 using Brn3b-eGFP optogenetically labeled cells. This method provides a new approach for the isolation of RGCs for the study of early developed RGCs, the study of RGC subtypes and the isolation of RGCs for cell transplantation studies.

15.
Front Cell Neurosci ; 17: 1145574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293627

RESUMO

Traumatic optic neuropathy (TON) is a condition that causes massive loss of retinal ganglion cells (RGCs) and their axonal fibers, leading to visual insufficiency. Several intrinsic and external factors can limit the regenerative ability of RGC after TON, subsequently resulting in RGC death. Hence, it is important to investigate a potential drug that can protect RGC after TON and enhance its regenerative capacity. Herein, we investigated whether Huperzine A (HupA), extracted from a Chinese herb, has neuroprotective effects and may enhance neuronal regeneration following the optic nerve crush (ONC) model. We compared the three modes of drug delivery and found that intravitreal injection of HupA could promote RGC survival and axonal regeneration after ONC. Mechanistically, HupA exerted its neuroprotective and axonal regenerative effects through the mTOR pathway; these effects could be blocked by rapamycin. To sum up, our findings suggest a promising application of HupA in the clinical treatment of traumatic optic nerve.

16.
Front Ophthalmol (Lausanne) ; 3: 1190439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38983049

RESUMO

The role of acetylcholine (ACh) in visual processing in the mammalian retina has been the focus of research for many decades. Pioneering work on the localization of ACh discovered that the neurotransmitter is synthesized and stored in a distinct subpopulation of amacrine (starburst) cells. It has been shown that ACh release is regulated to a low resting "tonic" level, much like what is observed at the neuromuscular junction (NMJ). If there were a dysfunction in the tonic release of ACh, might post-synaptic changes render the targets of ACh [i.e., retinal ganglion cells (RGCs)] vulnerable to disease? During my time at Pharmacia & Upjohn (PNU), selective nicotinic ACh receptor (nAChR) agonists (e.g., PNU-282987) were developed as a possible therapy for central nervous system (CNS) diseases. As RGCs are the main targets of neurodegeneration in glaucoma, could the activation of this target provide neuroprotection? In response to this question, experiments to identify alpha7 nAChRs in the retina (i.e., target ID studies) followed by "proof-of-concept" experiments were conducted. Target ID studies included binding studies with retinal homogenates, [125I]-alpha-bungarotoxin (α-BTX) autoradiography, and fluorescently tagged α-BTX binding in retinal slices. Imaging studies of intracellular calcium dynamics in the retinal slice were conducted. Reverse transcription-polymerase chain reaction (RT-PCR) analysis with alpha7 nAChR knockout mice using the "laser-capture microdissection" technique, in situ hybridization studies, and RT-PCR analysis of the human retina were conducted. Collectively, these experiments confirmed the presence of alpha7 nAChRs on specific cells in the retina. "Proof-of-concept" neuroprotection studies demonstrated that PNU-282987 provided significant protection for RGCs. This protection was dose dependent and was blocked with selective antagonists. More recently, evidence for the generation of new RGCs has been reported with PNU-282987 in rodents. Interestingly, the appearance of new RGCs is more pronounced with eye-drop application than with intravitreal injection. One could postulate that this reflects the neurogenic activation of alpha7 receptors on the retinal pigment epithelium (RPE) (eye drops) vs. a neuroprotective effect on RGCs (injections). In conclusion, there does appear to be a cholinergic retinal "tone" associated with RGCs that could be utilized as a neuroprotective therapy. However, a distinct cholinergic neurogenic mechanism also appears to exist in the outer retina that could possibly be exploited to generate new RGCs lost through various disease processes.

17.
Ann Transl Med ; 11(1): 3, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36760251

RESUMO

Background: Retinal ischemia-reperfusion (RIR) is a common pathological condition that can lead to retinal ganglion cell (RGC) death and visual impairment. However, the pathogenesis of RGC loss and visual impairment caused by retinal ischemia remains unclear. Methods: A mouse model of elevated intraocular pressure (IOP)-induced RIR injury was used. Flash visual evoked potentials (FVEPs) and electroretinography (ERG) recordings were performed to assess visual function. The structural integrity of the retina and the number of RGC were assessed using hematoxylin and eosin (HE) staining and retinal flat mounts. Ferroptosis was evaluated by testing the levels of glutathione (GSH), malondialdehyde (MDA), glutathione peroxidase (GPX4), and ferritin light chains (FTL) in the retina of wild-type (WT) and lipocalin-2 transgenic (LCN2-TG) mice after RIR injury. Results: We found that LCN2 was mainly expressed in the RGC layer in the retina of wild-type mice and remarkably upregulated after RIR injury. Compared with wild-type mice, aggravated RGC death and visual impairment were exhibited in LCN2-TG mice with RIR injury. Moreover, LCN2 overexpression activated glial cells and upregulated proinflammatory factors. More importantly, we found that LCN2 strongly promoted ferroptosis signaling in RGC death and visual impairment. Liproxstatin-1, an inhibitor of ferroptosis, could significantly ameliorate RGC death and visual impairment. Furthermore, we found significantly alleviated RGC death and retinal damage in LCN2 heterozygous knockout mice. Conclusions: Our study provides important insights linking upregulated LCN2-mediated promotion of ferroptosis to RGC death and visual function impairment in the pathogenesis of ischemic retinopathy.

18.
Front Cell Neurosci ; 17: 1173579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293630

RESUMO

Although gap junctional coupling in the developing retina is important for the maturation of neuronal networks, its role in the development of individual neurons remains unclear. Therefore, we herein investigated whether gap junctional coupling by starburst amacrine cells (SACs), a key neuron for the formation of direction selectivity, occurs during the developmental stage in the mouse retina. Neurobiotin-injected SACs coupled with many neighboring cells before eye-opening. The majority of tracer-coupled cells were retinal ganglion cells, and tracer coupling was not detected between SACs. The number of tracer-coupled cells significantly decreased after eye-opening and mostly disappeared by postnatal day 28 (P28). Membrane capacitance (Cm), an indicator of the formation of electrical coupling with gap junctions, was larger in SACs before than after eye-opening. The application of meclofenamic acid, a gap junction blocker, reduced the Cm of SACs. Gap junctional coupling by SACs was regulated by dopamine D1 receptors before eye-opening. In contrast, the reduction in gap junctional coupling after eye-opening was not affected by visual experience. At the mRNA level, 4 subtypes of connexins (23, 36, 43, and 45) were detected in SACs before eye-opening. Connexin 43 expression levels significantly decreased after eye-opening. These results indicate that gap junctional coupling by SACs occurs during the developmental period and suggest that the elimination of gap junctions proceeds with the innate system.

19.
Front Cell Neurosci ; 17: 1156829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362000

RESUMO

Glaucomatous neurodegeneration, a blinding disease affecting millions worldwide, has a need for the exploration of new and effective therapies. Previously, the glucagon-like peptide-1 receptor (GLP-1R) agonist NLY01 was shown to reduce microglia/macrophage activation, rescuing retinal ganglion cells after IOP elevation in an animal model of glaucoma. GLP-1R agonist use is also associated with a reduced risk for glaucoma in patients with diabetes. In this study, we demonstrate that several commercially available GLP-1R agonists, administered either systemically or topically, hold protective potential in a mouse model of hypertensive glaucoma. Further, the resulting neuroprotection likely occurs through the same pathways previously shown for NLY01. This work contributes to a growing body of evidence suggesting that GLP-1R agonists represent a viable therapeutic option for glaucoma.

20.
Pharmaceutics ; 15(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839646

RESUMO

AAV gene therapy for ocular disease has become a reality with the market authorisation of LuxturnaTM for RPE65-linked inherited retinal degenerations and many AAV gene therapies currently undergoing phase III clinical trials. Many ocular disorders have a mitochondrial involvement from primary mitochondrial disorders such as Leber hereditary optic neuropathy (LHON), predominantly due to mutations in genes encoding subunits of complex I, to Mendelian and multifactorial ocular conditions such as dominant optic atrophy, glaucoma and age-related macular degeneration. In this study, we have optimised the nuclear yeast gene, NADH-quinone oxidoreductase (NDI1), which encodes a single subunit complex I equivalent, creating a candidate gene therapy to improve mitochondrial function, independent of the genetic mutation driving disease. Optimisation of NDI1 (ophNdi1) substantially increased expression in vivo, protected RGCs and increased visual function, as assessed by optokinetic and photonegative response, in a rotenone-induced murine model. In addition, ophNdi1 increased cellular oxidative phosphorylation and ATP production and protected cells from rotenone insult to a significantly greater extent than wild type NDI1. Significantly, ophNdi1 treatment of complex I deficient patient-derived fibroblasts increased oxygen consumption and ATP production rates, demonstrating the potential of ophNdi1 as a candidate therapy for ocular disorders where mitochondrial deficits comprise an important feature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA