Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Lab Invest ; 104(7): 102086, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797343

RESUMO

Retinoschisin (RS1) is a secretory protein specifically localized to the extracellular domains in both the lateral retina and the pineal gland (PG). However, the functions of RS1 in the pineal body are poorly understood. To address this knowledge gap, in this study, we undertook histochemical, ultrastructural, and Western blotting analyses of the PG in rats and RS1-knock-in transgenic. We found that RS1 plays a key role in pineal gland calcification (PGC) in mice through both extracellular and intracellular pathways. RS1 was clustered around the cell membrane or intracellularly in pinealocytes, actively participating in the exchange of calcium and thereby mediating PGC. Additionally, RS1 deposition is essential for maintaining PGC architecture in the intercellular space of the adult PG. In RS1-knock-in mice with a nonsense mutation (p.Y65X) in the Rs1-domain of RS1, the Rs1-domain is chaotically dispersed in pinealocytes and the intercellular region of the PG. This prevents RS1 from binding calcified spots and forming calcified nodules, ultimately leading to the accumulation of calcareous lamellae in microvesicles. Additionally, RS1 was observed to colocalize with connexin-36, thereby modulating intercellular communication in the PG of both rats and mice. Our study revealed for the first time that RS1 is essential for maintaining PGC architecture and that it colocalizes with connexin 36 to modulate intercellular communication in the PG. These findings provide novel insights into the function of the RS1 gene in the PG.


Assuntos
Comunicação Celular , Glândula Pineal , Animais , Masculino , Camundongos , Ratos , Calcinose/metabolismo , Calcinose/patologia , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glândula Pineal/metabolismo , Ratos Sprague-Dawley , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo
2.
Exp Eye Res ; 242: 109872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514024

RESUMO

X-linked retinoschisis (XLRS) is an early onset degenerative retinal disease characterized by cystic lesions in the middle layers of the retina. These structural changes are accompanied by a loss of visual acuity and decreased contrast sensitivity. XLRS is caused by mutations in the gene Rs1 which encodes the secreted protein Retinoschisin 1. Young Rs1-mutant mouse models develop key hallmarks of XLRS including intraretinal schisis and abnormal electroretinograms. The electroretinogram (ERG) comprises activity of multiple cellular generators, and it is not known how and when each of these is impacted in Rs1 mutant mice. Here we use an ex vivo ERG system and pharmacological blockade to determine how ERG components generated by photoreceptors, ON-bipolar, and Müller glial cells are impacted in Rs1 mutants and to determine the time course of these changes. We report that ERG abnormalities begin near eye-opening and that all ERG components are involved.


Assuntos
Moléculas de Adesão Celular , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho , Retinosquise , Animais , Retinosquise/genética , Retinosquise/fisiopatologia , Camundongos , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Camundongos Endogâmicos C57BL , Mutação , Células Ependimogliais/patologia , Células Ependimogliais/metabolismo , Masculino , Células Bipolares da Retina/patologia , Células Bipolares da Retina/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279267

RESUMO

X-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss of visual acuity. XLRS is caused by loss-of-function mutations in the retinoschisin gene located on the X chromosome (RS1, MIM 30083). While proof-of-concept studies for gene augmentation therapy have been promising in in vitro and rodent models, clinical trials in XLRS patients have not been successful thus far. We performed a systematic literature investigation using search strings related to XLRS and gene therapy in in vivo and in vitro models. Three rounds of screening (title/abstract, full text and qualitative) were performed by two independent reviewers until consensus was reached. Characteristics related to study design and intervention were extracted from all studies. Results were divided into studies using (1) viral and (2) non-viral therapies. All in vivo rodent studies that used viral vectors were assessed for quality and risk of bias using the SYRCLE's risk-of-bias tool. Studies using alternative and non-viral delivery techniques, either in vivo or in vitro, were extracted and reviewed qualitatively, given the diverse and dispersed nature of the information. For in-depth analysis of in vivo studies using viral vectors, outcome data for optical coherence tomography (OCT), immunohistopathology and electroretinography (ERG) were extracted. Meta-analyses were performed on the effect of recombinant adeno-associated viral vector (AAV)-mediated gene augmentation therapies on a- and b-wave amplitude as well as the ratio between b- and a-wave amplitudes (b/a-ratio) extracted from ERG data. Subgroup analyses and meta-regression were performed for model, dose, age at injection, follow-up time point and delivery method. Between-study heterogeneity was assessed with a Chi-square test of homogeneity (I2). We identified 25 studies that target RS1 and met our search string. A total of 19 of these studies reported rodent viral methods in vivo. Six of the 25 studies used non-viral or alternative delivery methods, either in vitro or in vivo. Of these, five studies described non-viral methods and one study described an alternative delivery method. The 19 aforementioned in vivo studies were assessed for risk of bias and quality assessments and showed inconsistency in reporting. This resulted in an unclear risk of bias in most included studies. All 19 studies used AAVs to deliver intact human or murine RS1 in rodent models for XLRS. Meta-analyses of a-wave amplitude, b-wave amplitude, and b/a-ratio showed that, overall, AAV-mediated gene augmentation therapy significantly ameliorated the disease phenotype on these parameters. Subgroup analyses and meta-regression showed significant correlations between b-wave amplitude effect size and dose, although between-study heterogeneity was high. This systematic review reiterates the high potential for gene therapy in XLRS, while highlighting the importance of careful preclinical study design and reporting. The establishment of a systematic approach in these studies is essential to effectively translate this knowledge into novel and improved treatment alternatives.


Assuntos
Retinosquise , Masculino , Humanos , Animais , Camundongos , Retinosquise/genética , Retinosquise/terapia , Retinosquise/diagnóstico , Retina/patologia , Eletrorretinografia , Terapia Genética , Mutação , Proteínas do Olho/genética
4.
Cell Mol Life Sci ; 79(8): 448, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35876901

RESUMO

The RS1 gene on Xp 22.13 encodes retinoschisin which is known to directly interact with the retinal Na/K-ATPase at the photoreceptor inner segments. Pathologic mutations in RS1 cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy in young males. To further delineate the retinoschisin-Na/K-ATPase complex, co-immunoprecipitation was performed with porcine and murine retinal lysates targeting the ATP1A3 subunit. This identified the voltage-gated potassium (Kv) channel subunits Kv2.1 and Kv8.2 as direct interaction partners of the retinal Na/K-ATPase. Colocalization of the individual components of the complex was demonstrated at the membrane of photoreceptor inner segments. We further show that retinoschisin-deficiency, a frequent consequence of molecular pathology in XLRS, causes mislocalization of the macromolecular complex during postnatal retinal development with a simultaneous reduction of Kv2.1 and Kv8.2 protein expression, while the level of retinal Na/K-ATPase expression remains unaffected. Patch-clamp analysis revealed no effect of retinoschisin-deficiency on Kv channel mediated potassium ion currents in vitro. Together, our data suggest that Kv2.1 and Kv8.2 together with retinoschisin and the retinal Na/K-ATPase are integral parts of a macromolecular complex at the photoreceptor inner segments. Defective compartmentalization of this complex due to retinoschisin-deficiency may be a crucial step in initial XLRS pathogenesis.


Assuntos
Proteínas do Olho , Retinosquise , Animais , Proteínas do Olho/genética , Masculino , Mamíferos/metabolismo , Camundongos , Células Fotorreceptoras/metabolismo , Potássio/metabolismo , Retinosquise/genética , Retinosquise/metabolismo , Retinosquise/patologia , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
5.
Mol Ther ; 29(6): 2030-2040, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33601057

RESUMO

This study explored systemic immune changes in 11 subjects with X-linked retinoschisis (XLRS) in a phase I/IIa adeno-associated virus 8 (AAV8)-RS1 gene therapy trial (ClinicalTrials.gov: NCT02317887). Immune cell proportions and serum analytes were compared to 12 healthy male controls. At pre-dosing baseline the mean CD4/CD8 ratio of XLRS subjects was elevated. CD11c+ myeloid dendritic cells (DCs) and the serum epidermal growth factor (EGF) level were decreased, while CD123+ plasmacytoid DCs and serum interferon (IFN)-γ and tumor necrosis factor (TNF)-α were increased, indicating that the XLRS baseline immune status differs from that of controls. XLRS samples 14 days after AAV8-RS1 administration were compared with the XLRS baseline. Frequency of CD11b+CD11c+ DCc was decreased in 8 of 11 XLRS subjects across all vector doses (1e9-3e11 vector genomes [vg]/eye). CD8+human leukocyte antigen-DR isotype (HLA-DR)+ cytotoxic T cells and CD68+CD80+ macrophages were upregulated in 10 of 11 XLRS subjects, along with increased serum granzyme B in 8 of 11 XLRS subjects and elevated IFN-γ in 9 of 11 XLRS subjects. The six XLRS subjects with ocular inflammation after vector application gave a modestly positive correlation of inflammation score to their respective baseline CD4/CD8 ratios. This exploratory study indicates that XLRS subjects may exhibit a proinflammatory, baseline immune phenotype, and that intravitreal dosing with AAV8-RS1 leads to systemic immune activation with an increase of activated lymphocytes, macrophages, and proinflammatory cytokines.


Assuntos
Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/etiologia , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Terapia Genética , Retinosquise/genética , Retinosquise/imunologia , Retinosquise/terapia , Citocinas/sangue , Citocinas/metabolismo , Dependovirus/genética , Gerenciamento Clínico , Predisposição Genética para Doença , Terapia Genética/métodos , Vetores Genéticos , Humanos , Imunidade , Imunidade Celular , Retinosquise/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento
6.
Proc Natl Acad Sci U S A ; 113(19): 5287-92, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114531

RESUMO

Retinoschisin (RS1) is involved in cell-cell junctions in the retina, but is unique among known cell-adhesion proteins in that it is a soluble secreted protein. Loss-of-function mutations in RS1 lead to early vision impairment in young males, called X-linked retinoschisis. The disease is characterized by separation of inner retinal layers and disruption of synaptic signaling. Using cryo-electron microscopy, we report the structure at 4.1 Å, revealing double octamer rings not observed before. Each subunit is composed of a discoidin domain and a small N-terminal (RS1) domain. The RS1 domains occupy the centers of the rings, but are not required for ring formation and are less clearly defined, suggesting mobility. We determined the structure of the discoidin rings, consistent with known intramolecular and intermolecular disulfides. The interfaces internal to and between rings feature residues implicated in X-linked retinoschisis, indicating the importance of correct assembly. Based on this structure, we propose that RS1 couples neighboring membranes together through octamer-octamer contacts, perhaps modulated by interactions with other membrane components.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/ultraestrutura , Adesão Celular , Proteínas do Olho/química , Proteínas do Olho/ultraestrutura , Junções Intercelulares/ultraestrutura , Retina/química , Retina/ultraestrutura , Sequência de Aminoácidos , Animais , Simulação por Computador , Dimerização , Junções Intercelulares/química , Camundongos , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Conformação Proteica
7.
BMC Med Genet ; 19(1): 195, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419843

RESUMO

BACKGROUND: To describe the clinical phenotype and genetic cause underlying the disease pathology in a pedigree (affected n = 9) with X-linked retinoschisis (XLRS1) due to a novel RS1 mutation and to assess suitability for novel therapies using multimodal imaging. METHODS: The Irish National Registry for Inherited Retinal Degenerations (Target 5000) is a program including clinical history and examination with multimodal retinal imaging, electrophysiology, visual field testing and genetic analysis. Nine affected patients were identified across 3 generations of an XLRS1 pedigree. DNA sequencing was performed for each patient, one carrier female and one unaffected relative. Pedigree mapping revealed a further 4 affected males. RESULTS: All affected patients had a history of reduced visual acuity and dyschromatopsia; however, the severity of phenotype varied widely between the nine affected subjects. The stage of disease was classified as previously described. Phenotypic severity was not linearly correlated with age. A novel RS1 (Xp22.2) mutation was detected (NM_000330: c.413C > A) resulting in a p.Thr138Asn substitution. Protein modelling demonstrated a change in higher order protein folding that is likely pathogenic. CONCLUSIONS: This family has a novel gene mutation in RS1 with clinical evidence of XLRS1. A proportion of the older generation has developed end-stage macular atrophy; however, the severity is variable. Confirmation of genotype in the affected grandsons of this pedigree in principle may enable them to avail of upcoming gene therapies, provided there is anatomical evidence (from multimodal imaging) of potentially reversible early stage disease.


Assuntos
Proteínas do Olho/genética , Degeneração Macular/genética , Imagem Multimodal/métodos , Mutação , Retinosquise/genética , Adolescente , Idoso , Substituição de Aminoácidos , Sequência de Bases , Progressão da Doença , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Feminino , Expressão Gênica , Genótipo , Humanos , Degeneração Macular/complicações , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/patologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Linhagem , Fenótipo , Conformação Proteica , Dobramento de Proteína , Retinosquise/complicações , Retinosquise/diagnóstico por imagem , Retinosquise/patologia , Índice de Gravidade de Doença
8.
J Cell Mol Med ; 21(4): 768-780, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27995734

RESUMO

X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy in young males, caused by mutations in the RS1 gene. The function of the encoded protein, termed retinoschisin, and the molecular mechanisms underlying XLRS pathogenesis are still unresolved, although a direct interaction partner of the secreted retinoschisin, the retinal Na/K-ATPase, was recently identified. Earlier gene expression studies in retinoschisin-deficient (Rs1h-/Y ) mice provided a first indication of pathological up-regulation of mitogen-activated protein (MAP) kinase signalling in disease pathogenesis. To further investigate the role for retinoschisin in MAP kinase regulation, we exposed Y-79 cells and murine Rs1h-/Y retinae to recombinant retinoschisin and the XLRS-associated mutant RS1-C59S. Although normal retinoschisin stably bound to retinal cells, RS1-C59S exhibited a strongly reduced binding affinity. Simultaneously, exposure to normal retinoschisin significantly reduced phosphorylation of C-RAF and MAP kinases ERK1/2 in Y-79 cells and murine Rs1h-/Y retinae. Expression of MAP kinase target genes C-FOS and EGR1 was also down-regulated in both model systems. Finally, retinoschisin treatment decreased pro-apoptotic BAX-2 transcript levels in Y-79 cells and Rs1h-/Y retinae. Upon retinoschisin treatment, these cells showed increased resistance against apoptosis, reflected by decreased caspase-3 activity (in Y-79 cells) and increased photoreceptor survival (in Rs1h-/Y retinal explants). RS1-C59S did not influence C-RAF or ERK1/2 activation, C-FOS or EGR1 expression, or apoptosis. Our data imply that retinoschisin is a novel regulator of MAP kinase signalling and exerts an anti-apoptotic effect on retinal cells. We therefore discuss that disturbances of MAP kinase signalling by retinoschisin deficiency could be an initial step in XLRS pathogenesis.


Assuntos
Apoptose , Moléculas de Adesão Celular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas do Olho/metabolismo , Sistema de Sinalização das MAP Quinases , Retina/enzimologia , Retina/patologia , Retinosquise/enzimologia , Retinosquise/patologia , Animais , Moléculas de Adesão Celular/deficiência , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Ligação Proteica
9.
Handb Exp Pharmacol ; 242: 337-367, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28035529

RESUMO

As our understanding of the genetic basis for inherited retinal disease has expanded, gene therapy has advanced into clinical development. When the gene mutations associated with inherited retinal dystrophies were identified, it became possible to create animal models in which individual gene were altered to match the human mutations. The retina of these animals were then characterized to assess whether the mutated genes produced retinal phenotypes characteristic of disease-affected patients. Following the identification of a subpopulation of patients with the affected gene and the development of techniques for the viral gene transduction of retinal cells, it has become possible to deliver a copy of the normal gene into the retinal sites of the mutated genes. When this was performed in animal models of monogenic diseases, at an early stage of retinal degeneration when the affected cells remained viable, successful gene augmentation corrected the structural and functional lesions characteristic of the specific diseases in the areas of the retina that were successfully transduced. These studies provided the essential proof-of-concept needed to advance monogenic gene therapies into clinic development; these therapies include treatments for: Leber's congenital amaurosis type 2, caused by mutations to RPE65, retinoid isomerohydrolase; choroideremia, caused by mutations to REP1, Rab escort protein 1; autosomal recessive Stargardt disease, caused by mutations to ABCA4, the photoreceptor-specific ATP-binding transporter; Usher 1B disease caused by mutations to MYO7A, myosin heavy chain 7; X-linked juvenile retinoschisis caused by mutations to RS1, retinoschisin; autosomal recessive retinitis pigmentosa caused by mutations to MERTK, the proto-oncogene tyrosine-protein kinase MER; Leber's hereditary optic neuropathy caused by mutations to ND4, mitochondrial nicotinamide adenine dinucleotide ubiquinone oxidoreductase (complex I) subunit 4 and achromatopsia, caused by mutations to CNGA3, cyclic nucleotide-gated channel alpha 3 and CNGB3, cyclic nucleotide-gated channel beta 3. This review includes a tabulated summary of treatments for these monogenic retinal dystrophies that have entered into clinical development, as well as a brief summary of the preclinical data that supported their advancement into clinical development.


Assuntos
Distrofias Retinianas/genética , Distrofias Retinianas/terapia , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/terapia , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , Proto-Oncogene Mas , Retinose Pigmentar/genética , Retinose Pigmentar/terapia
10.
J Formos Med Assoc ; 114(9): 872-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24529551

RESUMO

BACKGROUND/PURPOSE: To describe the clinical characteristics of a Taiwanese family with X-linked retinoschisis (XLRS) and to investigate the molecular genetics of a novel mutation in the retinoschisin 1 (RS1) gene. METHODS: A total of 15 participants in this XLRS family were analyzed. Complete ophthalmic examinations and fundus photography were performed on 15 family members. These tests identified five affected males and two female carriers. Blood samples were collected, and genomic DNA was extracted. Best-corrected visual acuity, optical coherence tomography (OCT), electroretinogram (ERG), and direct DNA sequence analysis of the RS1 gene were performed on 15 family members. RESULTS: Five affected males, with visual acuity ranging from 0.2 to 0.7, had macular schisis and abnormal retinal pigment epithelium pigmentation. The mixed scotopic ERG "b" wave was more reduced than the "a" wave. OCT revealed typical microcystic schisis cavities within the macula area. Direct DNA sequence analysis revealed a single base pair deletion, 97delT, in all the affected individuals. This deletion resulted in a frameshift mutation of the RS1 gene, causing protein truncation. The affected males in this family showed moderately decreased visual acuity and dysfunction in both cone cells and phototransduction. CONCLUSION: We identified a novel RS1 (97delT) mutation in a Taiwanese family with XLRS. This finding expands the RS1 mutation spectrum and may help to further understand the molecular pathogenesis of XLRS.


Assuntos
Proteínas do Olho/genética , Retinosquise/genética , Adolescente , Adulto , Idoso , Criança , Análise Mutacional de DNA , Eletrorretinografia , Éxons , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Taiwan , Tomografia de Coerência Óptica , Acuidade Visual , Adulto Jovem
11.
Hum Gene Ther ; 35(9-10): 342-354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38661546

RESUMO

X-linked retinoschisis (XLRS) is a monogenic recessive inherited retinal disease caused by defects in retinoschisin (RS1). It manifests clinically as retinal schisis cavities and a disproportionate reduction of b-wave amplitude compared with the a-wave amplitude. Currently there is no approved treatment. In the last decade, there has been major progress in the development of gene therapy for XLRS. Previous preclinical studies have demonstrated the treatment benefits of hRS1 gene augmentation therapy in mouse models. However, outcomes in clinical trials have been disappointing, and this might be attributed to dysfunctional assembly of RS1 complexes and/or the impaired targeted cells. In this study, the human synapsin 1 gene promoter (hSyn) was used to control the expression of hRS1 to specifically target retinal ganglion cells and our results confirmed the specific expression and functional assembly of the protein. Moreover, our results demonstrated that a single intravitreal injection of rAAV2-hSyn-hRS1 results in architectural restoration of retinal schisis cavities and improvement in vision in a mouse model of XLRS. In brief, this study not only supports the clinical development of the rAAV2-hSyn-hRS1 vector in XLRS patients but also confirms the therapeutic potential of rAAV-based gene therapy in inherited retinal diseases.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Injeções Intravítreas , Camundongos Knockout , Células Ganglionares da Retina , Retinosquise , Sinapsinas , Animais , Dependovirus/genética , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Camundongos , Terapia Genética/métodos , Retinosquise/terapia , Retinosquise/genética , Humanos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Sinapsinas/genética , Sinapsinas/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Expressão Gênica , Regiões Promotoras Genéticas , Retina/metabolismo , Retina/patologia , Técnicas de Transferência de Genes
12.
Front Med (Lausanne) ; 11: 1347599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938378

RESUMO

Purpose: Previous studies have reported Caspase-1 (Casp1) is upregulated in mouse models of Juvenile X-linked Retinoschisis (XLRS), however no functional role for Casp1 in disease progression has been identified. We performed electroretinogram (ERG) and standardized optical coherence tomography (OCT) in mice deficient in the Retinoschisin-1 (Rs1) and Casp1 and Caspase-11 (Casp11) genes (Rs1-KO;Casp1/11-/- ) to test the hypothesis that Casp1 may play a role in disease evolution and or severity of disease. Currently, no studies have ventured to investigate the longer-term effects of Casp1 on phenotypic severity and disease progression over time in XLRS, and specifically the effect on electroretinogram. Methods: Rs1-KO;Casp1/11-/- mice were generated by breeding Rs1-KO mice with Casp1/11-/- mice. OCT imaging was analyzed at 2-, 4-, and 15-16 months of age. Outer nuclear layer (ONL) thickness and adapted standardized cyst severity score were measured and averaged from 4 locations 500 µm from the optic nerve. Adapted standardized cyst severity score was 1: absent cysts, 2: <30 µm, 3: 30-49 µm, 4: 50-69 µm, 5: 70-99 µm, 6: >99 µm. Electroretinograms (ERG) were recorded in dark-adapted and light-adapted conditions at 2 and 4 months. Results obtained from Rs1-KO and Rs1-KO;Casp1/11-/- eyes were compared with age matched WT control eyes at 2 months. Results: Intraretinal schisis was not observed on OCT in WT eyes, while schisis was apparent in most Rs1-KO and Rs1-KO;Casp1/11-/- eyes at 2 and 4 months of age. There was no difference in the cyst severity score from 2 to 4 months of age, or ONL thickness from 2 to 16 months of age between Rs1-KO and Rs1-KO;Casp1/11-/- eyes. ERG amplitudes were similarly reduced in Rs1-KO and Rs1-KO;Casp1/11-/- compared to WT controls at 2 months of age, and there was no difference between Rs1-KO and Rs1-KO;Casp1/11-/- eyes at 2 or 4 months of age, suggesting no impact on the electrical function of photoreceptors over time in the absence of Casp1. Conclusion: Although Casp1 has been reported to be significantly upregulated in Rs1-KO mice, our preliminary data suggest that removing Casp1/11 does not modulate photoreceptor electrical function or alter the trajectory of the retinal architecture over time.

13.
J Comp Pathol ; 207: 30-32, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37925755

RESUMO

Retinoschisis is a poorly documented form of retinal degeneration characterized by cyst-like splitting that occurs between the inner nuclear and outer plexiform layers. The pathogenesis of retinoschisis is incompletely understood, but congenital, acquired and secondary aetiologies (glaucoma, inflammation, neoplasia) are described in humans. This retrospective study investigated the prevalence and associated histological and clinical features of retinoschisis in cats and dogs submitted for biopsy over a 10-year period. Of 140 samples with documented 'retinal vacuolation', four out of 120 (3%) canine samples and one out of 20 (5%) feline samples had changes consistent with retinoschisis. In most cases (80%), there was concurrent retinal detachment. In cases with available histories, increased intraocular pressure, proptosis and retinal detachment were reported clinical findings. In cats and dogs, retinoschisis is a retinal change that is generally secondary to other ocular lesions.


Assuntos
Doenças do Gato , Doenças do Cão , Descolamento Retiniano , Retinosquise , Humanos , Gatos , Animais , Cães , Retinosquise/veterinária , Retinosquise/complicações , Retinosquise/patologia , Descolamento Retiniano/veterinária , Descolamento Retiniano/complicações , Descolamento Retiniano/patologia , Estudos Retrospectivos , Retina/patologia , Doenças do Gato/patologia , Doenças do Cão/patologia
14.
ACS Chem Neurosci ; 14(18): 3368-3384, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37665674

RESUMO

Protein drugs are used for treating many diseases of the eye and the brain. The formidable blood neural barriers prevent the delivery of these drugs into the eye and the brain. Hence, there is a need for a protein drug delivery system to deliver large proteins across blood-neural barriers. Low half-life, poor penetration of epithelial barriers, low stability, and immunogenicity limit the use of non-invasive systemic routes for delivering proteins. In this pre-clinical study, the efficacy of a new maxillofacial route for administering protein drugs using a novel drug delivery system is compared with systemic administration through intra-peritoneal injection and ocular administration through topical eye drops and subconjunctival and intravitreal injections. Bevacizumab and retinoschisin proteins were administered using the maxillofacial technique along with systemic and ocular routes in wild-type male C57BL/6J mice. Liquid chromatography with tandem mass spectrometry and western blot was used to detect bevacizumab in tissue samples. Furthermore, immunohistochemistry was performed to detect the presence and localization of bevacizumab and retinoschisin in the retina and brain. The maxillofacial route of delivery could target the brain including regions involved in the visual pathway and optic nerve. The maxillofacial technique and intravitreal injection were effective in delivering the drugs into the retina. A new concept based on the glymphatic pathway, cerebrospinal fluid drug distribution, and the crossover of ipsilateral optic nerve fibers at optic chiasma is proposed to explain the presence of the drug in contralateral eye following maxillofacial administration and intravitreal injection.


Assuntos
Nervo Óptico , Vias Visuais , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Bevacizumab , Encéfalo , Retina , Sistemas de Liberação de Medicamentos
15.
Prog Retin Eye Res ; 87: 100999, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34390869

RESUMO

X-linked Retinoschisis (XLRS) is an early-onset transretinal dystrophy, often with a prominent macular component, that affects males and generally spares heterozygous females because of X-linked recessive inheritance. It results from loss-of-function RS1 gene mutations on the X-chromosome. XLRS causes bilateral reduced acuities from young age, and on clinical exam and by ocular coherence tomography (OCT) the neurosensory retina shows foveo-macular cystic schisis cavities in the outer plexiform (OPL) and inner nuclear layers (INL). XLRS manifests between infancy and school-age with variable phenotypic presentation and without reliable genotype-phenotype correlations. INL disorganization disrupts synaptic signal transmission from photoreceptors to ON-bipolar cells, and this reduces the electroretinogram (ERG) bipolar b-wave disproportionately to photoreceptor a-wave changes. RS1 gene expression is localized mainly to photoreceptors and INL bipolar neurons, and RS1 protein is thought to play a critical cell adhesion role during normal retinal development and later for maintenance of retinal structure. Several independent XLRS mouse models with mutant RS1 were created that recapitulate features of human XLRS disease, with OPL-INL schisis cavities, early onset and variable phenotype across mutant models, and reduced ERG b-wave to a-wave amplitude ratio. The faithful phenotype of the XLRS mouse has assisted in delineating the disease pathophysiology. Delivery to XLRS mouse retina of an AAV8-RS1 construct under control of the RS1 promoter restores the retinal structure and synaptic function (with increase of b-wave amplitude). It also ameliorates the schisis-induced inflammatory microglia phenotype toward a state of immune quiescence. The results imply that XLRS gene therapy could yield therapeutic benefit to preserve morphological and functional retina particularly when intervention is conducted at earlier ages before retinal degeneration becomes irreversible. A phase I/IIa single-center, open-label, three-dose-escalation clinical trial reported a suitable safety and tolerability profile of intravitreally administered AAV8-RS1 gene replacement therapy for XLRS participants. Dose-related ocular inflammation occurred after dosing, but this resolved with topical and oral corticosteroids. Systemic antibodies against AAV8 increased in dose-dependent fashion, but no antibodies were observed against the RS1 protein. Retinal cavities closed transiently in one participant. Technological innovations in methods of gene delivery and strategies to further reduce immune responses are expected to enhance the therapeutic efficacy of the vector and ultimate success of a gene therapy approach.


Assuntos
Retinosquise , Animais , Eletrorretinografia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Terapia Genética/métodos , Humanos , Masculino , Camundongos , Retina/metabolismo , Retinosquise/genética , Retinosquise/terapia
16.
Hum Gene Ther ; 32(13-14): 707-716, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33832349

RESUMO

To investigate whether exosome-associated adeno-associated virus (AAV) retinoschisin 1 (RS1) vector improved the transduction efficiency of RS1 in the mouse retina. pAAV2-RS1-ZsGreen plasmid was constructed by homologous recombination. Exosome-associated AAV vectors containing human RS1 gene (exosome-associated AAV [exo-AAV]2-RS1-ZsGreen) were isolated from producer cells' supernatant, and confirmed by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. In vitro, HEK-293T cells were transduced with AAV2-RS1-ZsGreen and exo-AAV2-RS1-ZsGreen. In vivo, 1 µL of AAV2-RS1-ZsGreen or 1 µL exo-AAV2-RS1-ZsGreen (2 × 108 genome copies/µL) was injected intravitreally into the C57BL/6J mouse eyes. Phosphate buffer saline was injected as controls. The mRNA and the protein expression in the retina were detected. Exo-AAV2-RS1-ZsGreen possessed lipid bilayers, a saucer-like structures and an average of 120 nm particle size. The expression of RS1 and ZsGreen in exo-AAV2-RS1-ZsGreen group were 7.6 times and 5.7 times that of AAV2-RS1-ZsGreen group in HEK-293T cells, respectively. Furthermore, RS1 protein expression increased by 11.8 times in HEK-293T cells. Intravitreal injection of exo-AAV significantly increased the transduction efficiency of RS1 than AAV. Exo-AAV may be a powerful gene delivery system for gene therapy of X-link retinoschisis as well as other inherited retina degenerations.


Assuntos
Exossomos , Vetores Genéticos , Animais , Dependovirus/genética , Exossomos/genética , Vetores Genéticos/genética , Humanos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Retina , Transdução Genética
17.
Exp Ther Med ; 21(2): 124, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33335587

RESUMO

The purpose of the present study was to assess the clinical characteristics of X-linked retinoschisis (XLRS) in a Chinese family over a 7-year period with the aim of identifying possible genetic mutations associated with this disease. A total of 2 male siblings from a family with XLRS were followed up for 7 years and the best-corrected visual acuity and data obtained using slit-lamp microscopy, indirect ophthalmoscopy, fundus photography, spectral domain-optical coherence tomography (OCT), fundus autofluorescence and fundus fluorescence (FFA) and multifocal electroretinograms (ERG) were examined. The coding regions of the retinoschisin 1 (RS1) gene were amplified by PCR and sequenced directly. The proband exhibited blurred vision at 12 years old and was indicated to exhibit a typical phenotype of XLRS at 30 years old. The elder brother exhibited blurred vision at 11 years old and was diagnosed with XLRS at 33 years old. There was no change in the best-corrected visual acuities in the two patients over the 7 years. The OCT results suggested that there were intraretinal cysts and macular atrophy in the eyes of the older sibling, whilst a 'spoke-wheel' pattern was present in the macula of the younger sibling. In addition, OCT examination revealed foveal schisis. FFA analysis indicated a hyperfluorescent signal in the central macula. Multifocal ERG recordings indicated that responses were markedly reduced in the central and outer rings bilaterally. The central retinal thickness of the younger sibling increased but the central retinal thickness of the older sibling was not changed during the 7 years. Sequencing analysis revealed that the mutation was c.366G>A (p.Trp122*) in exon 5 of Xp22.1. Gene mutation analysis indicated that the affected male siblings harbored a Trp122* (c.366G>A) mutation, while the patients' mother was demonstrated to be a heterozygous carrier of the pathogenic mutation. To conclude, the present study discovered a novel XLRS mutation in a Chinese family, where the Trp122* mutation caused a significant change in the function of the RS1 protein. Over the 7 years of observation, although the vision was not significantly impaired in the two patients examined, the central retinal thickness of the younger sibling increased but the central retinal thickness of the older sibling was not altered.

18.
Hum Gene Ther ; 32(13-14): 667-681, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019822

RESUMO

To understand RS1 gene interaction networks in the X-linked retinoschisis (XLRS) mouse retina (Rs1-/y), we analyzed the transcriptome by RNA sequencing before and after in vivo expression of exogenous retinoschisin (RS1) gene delivered by AAV8. RS1 is a secreted cell adhesion protein that is critical for maintaining structural lamination and synaptic integrity of the neural retina. RS1 loss-of-function mutations cause XLRS disease in young boys and men, with splitting ("schisis") of retinal layers and synaptic dysfunction that cause progressive vision loss with age. Analysis of differential gene expression profiles and pathway enrichment analysis of Rs1-KO (Rs1-/y) retina identified cell surface receptor signaling and positive regulation of cell adhesion as potential RS1 gene interaction networks. Most importantly, it also showed massive dysregulation of immune response genes at early age, with characteristics of a microglia-driven proinflammatory state. Delivery of AAV8-RS1 primed the Rs1-KO retina toward structural and functional recovery. The disease transcriptome transitioned toward a recovery phase with upregulation of genes implicated in wound healing, anatomical structure (camera type eye) development, metabolic pathways, and collagen IV networks that provide mechanical stability to basement membrane. AAV8-RS1 expression also attenuated the microglia gene signatures to low levels toward immune quiescence. This study is among the first to identify RS1 gene interaction networks that underlie retinal structural and functional recovery after RS1 gene therapy. Significantly, it also shows that providing wild-type RS1 gene function caused the retina immune status to transition from a degenerative inflammatory phenotype toward immune quiescence, even though the transgene is not directly linked to microglia function. This study indicates that inhibition of microglial proinflammatory responses is an integral part of therapeutic rescue in XLRS gene therapy, and gene therapy might realize its full potential if delivered before microglia activation and photoreceptor cell death. Clinical Trials. gov Identifier NTC 02317887.


Assuntos
Retinosquise , Animais , Eletrorretinografia , Proteínas do Olho/genética , Redes Reguladoras de Genes , Terapia Genética , Vetores Genéticos/genética , Camundongos , Microglia , Retina , Retinosquise/genética , Retinosquise/terapia
19.
Stem Cell Reports ; 13(5): 906-923, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31668851

RESUMO

X-linked juvenile retinoschisis (XLRS), linked to mutations in the RS1 gene, is a degenerative retinopathy with a retinal splitting phenotype. We generated human induced pluripotent stem cells (hiPSCs) from patients to study XLRS in a 3D retinal organoid in vitro differentiation system. This model recapitulates key features of XLRS including retinal splitting, defective retinoschisin production, outer-segment defects, abnormal paxillin turnover, and impaired ER-Golgi transportation. RS1 mutation also affects the development of photoreceptor sensory cilia and results in altered expression of other retinopathy-associated genes. CRISPR/Cas9 correction of the disease-associated C625T mutation normalizes the splitting phenotype, outer-segment defects, paxillin dynamics, ciliary marker expression, and transcriptome profiles. Likewise, mutating RS1 in control hiPSCs produces the disease-associated phenotypes. Finally, we show that the C625T mutation can be repaired precisely and efficiently using a base-editing approach. Taken together, our data establish 3D organoids as a valid disease model.


Assuntos
Organoides/patologia , Retina/patologia , Retinosquise/patologia , Células Cultivadas , Proteínas do Olho/genética , Edição de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Organoides/metabolismo , Mutação Puntual , Retina/metabolismo , Retinosquise/genética , Retinosquise/terapia
20.
Front Cell Neurosci ; 11: 232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848397

RESUMO

Modulation of ion channels by extracellular proteins plays critical roles in shaping synaptic plasticity. Retinoschisin (RS1) is an extracellular adhesive protein secreted from photoreceptors and bipolar cells, and it plays an important role during retinal development, as well as in maintaining the stability of retinal layers. RS1 is known to form homologous octamers and interact with molecules on the plasma membrane including phosphatidylserine, sodium-potassium exchanger complex, and L-type voltage-gated calcium channels (LTCCs). However, how this physical interaction between RS1 and ion channels might affect the channel gating properties is unclear. In retinal photoreceptors, two major LTCCs are Cav1.3 (α1D) and Cav1.4 (α1F) with distinct biophysical properties, functions and distributions. Cav1.3 is distributed from the inner segment (IS) to the synaptic terminal and is responsible for calcium influx to the photoreceptors and overall calcium homeostasis. Cav1.4 is only expressed at the synaptic terminal and is responsible for neurotransmitter release. Mutations of the gene encoding Cav1.4 cause X-linked incomplete congenital stationary night blindness type 2 (CSNB2), while null mutations of Cav1.3 cause a mild decrease of retinal light responses in mice. Even though RS1 is known to maintain retinal architecture, in this study, we present that RS1 interacts with both Cav1.3 and Cav1.4 and regulates their activations. RS1 was able to co-immunoprecipitate with Cav1.3 and Cav1.4 from porcine retinas, and it increased the LTCC currents and facilitated voltage-dependent activation in HEK cells co-transfected with RS1 and Cav1.3 or Cav1.4, thus providing evidence of a functional interaction between RS1 and LTCCs. The interaction between RS1 and Cav1.3 did not change the calcium-dependent inactivation of Cav1.3. In mice lacking RS1, the expression of Cav1.3 and Cav1.4 in the retina decreased, while in mice with Cav1.4 deletion, the retinal level of RS1 decreased. These results provide important evidence that RS1 is not only an adhesive protein promoting cell-cell adhesion, it is essential for anchoring other membrane proteins including ion channels and enhancing their function in the retina.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA