Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(31): e2315599121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39058581

RESUMO

Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing "synaptopathy" and hearing loss. Cocultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that, when P3-5 denervated organs of Corti are cocultured with SGNs, newly formed IHC/SGN synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When using older organs of Corti at P10-11, synaptic activity probed by deconvolution showed more mature release properties, closer to the specialized mode of IHC synaptic transmission crucial for coding the sound signal. This functional assessment of newly formed IHC synapses developed here, provides a powerful tool for testing approaches to improve synapse regeneration.


Assuntos
Gânglio Espiral da Cóclea , Sinapses , Animais , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/fisiologia , Sinapses/fisiologia , Camundongos , Células Ciliadas Auditivas Internas/fisiologia , Células Ciliadas Auditivas Internas/metabolismo , Transmissão Sináptica/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo , Regeneração/fisiologia , Células Ciliadas Auditivas/fisiologia , Técnicas de Cocultura/métodos , Optogenética/métodos , Regeneração Nervosa/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Órgão Espiral/fisiologia , Órgão Espiral/citologia , Órgão Espiral/metabolismo
2.
J Neurosci ; 43(12): 2075-2089, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810227

RESUMO

Resident cochlear macrophages rapidly migrate into the inner hair cell synaptic region and directly contact the damaged synaptic connections after noise-induced synaptopathy. Eventually, such damaged synapses are spontaneously repaired, but the precise role of macrophages in synaptic degeneration and repair remains unknown. To address this, cochlear macrophages were eliminated using colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622. Sustained treatment with PLX5622 in CX3CR1 GFP/+ mice of both sexes led to robust elimination of resident macrophages (∼94%) without significant adverse effects on peripheral leukocytes, cochlear function, and structure. At 1 day (d) post noise exposure of 93 or 90 dB SPL for 2 hours, the degree of hearing loss and synapse loss were comparable in the presence and absence of macrophages. At 30 d after exposure, damaged synapses appeared repaired in the presence of macrophages. However, in the absence of macrophages, such synaptic repair was significantly reduced. Remarkably, on cessation of PLX5622 treatment, macrophages repopulated the cochlea, leading to enhanced synaptic repair. Elevated auditory brainstem response thresholds and reduced auditory brainstem response Peak 1 amplitudes showed limited recovery in the absence of macrophages but recovered similarly with resident and repopulated macrophages. Cochlear neuron loss was augmented in the absence of macrophages but showed preservation with resident and repopulated macrophages after noise exposure. While the central auditory effects of PLX5622 treatment and microglia depletion remain to be investigated, these data demonstrate that macrophages do not affect synaptic degeneration but are necessary and sufficient to restore cochlear synapses and function after noise-induced synaptopathy.SIGNIFICANCE STATEMENT The synaptic connections between cochlear inner hair cells and spiral ganglion neurons can be lost because of noise over exposure or biological aging. This loss may represent the most common causes of sensorineural hearing loss also known as hidden hearing loss. Synaptic loss results in degradation of auditory information, leading to difficulty in listening in noisy environments and other auditory perceptual disorders. We demonstrate that resident macrophages of the cochlea are necessary and sufficient to restore synapses and function following synaptopathic noise exposure. Our work reveals a novel role for innate-immune cells, such as macrophages in synaptic repair, that could be harnessed to regenerate lost ribbon synapses in noise- or age-linked cochlear synaptopathy, hidden hearing loss, and associated perceptual anomalies.


Assuntos
Células Ciliadas Auditivas Internas , Perda Auditiva Provocada por Ruído , Masculino , Feminino , Animais , Camundongos , Células Ciliadas Auditivas Internas/fisiologia , Estimulação Acústica/efeitos adversos , Limiar Auditivo/fisiologia , Cóclea/metabolismo , Sinapses/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Macrófagos/metabolismo
3.
J Physiol ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373584

RESUMO

Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This transmission necessitates rapid and sustained neurotransmitter release, which depends on a large pool of synaptic vesicles at the hair-cell presynapse. While previous work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, the mechanisms of this process in hair cells remain unclear. Our study demonstrates that the kinesin motor protein Kif1a, along with an intact microtubule network, is essential for enriching synaptic vesicles at the presynapse in hair cells. Through genetic and pharmacological approaches, we disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. These manipulations led to a significant reduction in synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, in vivo calcium imaging, and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1aa mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Furthermore, kif1aa mutants exhibit impaired rheotaxis, a behaviour reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-mediated microtubule transport is critical to enrich synaptic vesicles at the active zone, a process that is vital for proper ribbon-synapse function in hair cells. KEY POINTS: Kif1a mRNAs are present in zebrafish hair cells. Loss of Kif1a disrupts the enrichment of synaptic vesicles at ribbon synapses. Disruption of microtubules depletes synaptic vesicles at ribbon synapses. Kif1aa  mutants have impaired ribbon-synapse and sensory-system function.

4.
Exp Cell Res ; 418(2): 113280, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35835175

RESUMO

Oxidative stress is considered a driving event in the damage to inner hair cell (IHC) synapses. Mitochondrial deacetylase sirtuin 3 (SIRT3) is an important regulator of reactive oxygen species (ROS) production. However, the effect of SIRT3 on IHC synapses remains elusive. In this study, we treated cochlear basilar membrane (CBM) with hydrogen peroxide (H2O2) to establish an oxidative stress model in vitro. The H2O2-induced CBM exhibited decreased the number of IHC synapses with low levels of ATP and mitochondrial membrane potential. Additionally, H2O2-induced CBM showed markedly reduced levels of forkhead box protein O 3a (FOXO3a), superoxide dismutase 2 (SOD2), and isocitrate dehydrogenase 2 (IDH2), thereby increasing ROS generation. SIRT3 overexpression via administrating nicotinamide riboside in the H2O2-induced CBM protected IHC synapses against oxidative stress and inhibited hair cell apoptosis. We further demonstrated that SIRT3 overexpression led to upregulation of IDH2, and hypoacetylation of several proteins, such as FOXO3a and SOD2, which in turn reduced the levels of ROS and improved mitochondrial function. Collectively, these findings reveal that overexpressing SIRT3 may be a potential therapeutic approach for damaged IHC synapses induced by oxidative stress.


Assuntos
Sirtuína 3 , Células Ciliadas Auditivas Internas/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Sinapses/metabolismo
5.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982165

RESUMO

Synaptic ribbons are presynaptic protein complexes that are believed to be important for the transmission of sensory information in the visual system. Ribbons are selectively associated with those synapses where graded changes in membrane potential drive continuous neurotransmitter release. Defective synaptic transmission can arise as a result of the mutagenesis of a single ribbon component. Visual diseases that stem from malfunctions in the presynaptic molecular machinery of ribbon synapses in the retina are rare. In this review, we provide an overview of synaptopathies that give rise to retinal malfunction and our present understanding of the mechanisms that underlie their pathogenesis and discuss muscular dystrophies that exhibit ribbon synapse involvement in the pathology.


Assuntos
Doenças Retinianas , Sinapses , Humanos , Sinapses/metabolismo , Retina/metabolismo , Transmissão Sináptica , Citoesqueleto , Doenças Retinianas/genética , Doenças Retinianas/metabolismo
6.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806348

RESUMO

Combining aminoglycosides and loop diuretics often serves as an effective ototoxic approach to deafen experimental animals. The treatment results in rapid hair cell loss with extended macrophage presence in the cochlea, creating a sterile inflammatory environment. Although the early recruitment of macrophages is typically neuroprotective, the delay in the resolution of macrophage activity can be a complication if the damaged cochlea is used as a model to study subsequent therapeutic strategies. Here, we applied a high dose combination of systemic gentamicin and furosemide in C57 BL/6 and CBA/CaJ mice and studied the ototoxic consequences in the cochlea, including hair cell survival, ribbon synaptic integrity, and macrophage activation up to 15-day posttreatment. The activity of macrophages in the basilar membrane was correlated to the severity of cochlear damage, particularly the hair cell damage. Comparatively, C57 BL/6 cochleae were more vulnerable to the ototoxic challenge with escalated macrophage activation. In addition, the ribbon synaptic deterioration was disproportionately limited when compared to the degree of outer hair cell loss in CBA/CaJ mice. The innate and differential otoprotection in CBA/CaJ mice appears to be associated with the rapid activation of cochlear macrophages and a certain level of synaptogenesis after the combined gentamicin and furosemide treatment.


Assuntos
Furosemida , Gentamicinas , Animais , Cóclea , Furosemida/farmacologia , Gentamicinas/farmacologia , Células Ciliadas Auditivas Externas , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA
7.
J Neurosci ; 40(39): 7390-7404, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32847965

RESUMO

Synaptic ribbons are thought to provide vesicles for continuous release in some retinal nonspiking neurons, yet recent studies indicate that genetic removal of the ribbon has little effect on release kinetics. To investigate vesicle replenishment at synaptic ribbons, we used total internal reflection fluorescence microscopy to image synaptic vesicles and ribbons in retinal bipolar cells of goldfish (Carassius auratus) of both sexes. Analysis of vesicles released by trains of 30 ms depolarizations revealed that most releasable vesicles reside within 300 nm of the ribbon center. A single 30 ms step to 0 mV was sufficient to deplete the membrane-proximal vesicle pool, while triggering rapid stepwise movements of distal vesicles along the ribbon and toward the plasma membrane. Replenishment only becomes rate-limiting for recovery from paired-pulse depression for interstimulus intervals shorter than 250 ms. For longer interstimulus intervals, vesicle movement down the ribbon is fast enough to replenish released vesicles, but newly arrived vesicles are not release-ready. Notably, the rates of vesicle resupply and maturation of newcomers are among the fastest measured optically at any synapse. Lastly, our data show that the delay in vesicle departure increases and vesicle speed decreases with multiple stimuli. Our results support a role for ribbons in the supply of vesicles for release, provide direct measurements of vesicle movement down the ribbon, and suggest that multiple factors contribute to paired-pulse depression.SIGNIFICANCE STATEMENT Synaptic ribbons are macromolecular scaffolds that tether synaptic vesicles close to release sites in nonspiking neurons of the retina and cochlea. Because these neurons release neurotransmitter continuously, synaptic ribbons are assumed to act as platforms for supplying vesicles rapidly in the face of prolonged stimulation. Yet, ribbon synapses suffer from profound paired-pulse depression, which takes seconds to subside. We investigated the mechanistic origin of this phenomenon by directly imaging triggered vesicle movement and release at ribbon sites in retinal bipolar cells, and find that, although ribbon synapses deliver and prime vesicles faster than most conventional synapses, both vesicle absence and vesicle priming contribute to the long recovery from paired-pulse depression.


Assuntos
Exocitose , Potenciais Sinápticos , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Feminino , Carpa Dourada , Masculino , Plasticidade Neuronal , Neurônios/metabolismo , Neurônios/fisiologia
8.
J Physiol ; 599(16): 3913-3936, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34143497

RESUMO

KEY POINTS: We investigated hair-cell regeneration in the zebrafish lateral line following the application of the ototoxic compound copper. In early-larval zebrafish (<10 days post-fertilisation), regenerated hair cells drive action potentials (APs) in the afferent neurons 24 h post-copper treatment (24 hpt). Full regeneration of the early-larval neuromasts, the organs containing the hair cells, requires ∼48 h due to the progressive addition of hair cells and synaptic refinement. In older larval zebrafish, regenerated hair cells are active and drive afferent APs by 48 hpt, which is comparable to larvae, but the functional recovery of their neuromasts requires >120 hpt. Afferent terminals within the regenerating neuromast appear to initially contact supporting cells, and their complete ablation prevents the timely reappearance of supporting cells and hair cells. We conclude that the regeneration of zebrafish neuromasts is slower after the initial developmental stages, and that the afferent input plays a key role in driving this process. ABSTRACT: Hair cells are mechanosensory receptors responsible for transducing auditory and vestibular information into electrical signals, which are then transmitted with remarkable precision to afferent neurons. Different from mammals, the hair cells of lower vertebrates, including those present in the neuromasts of the zebrafish lateral line, regenerate following environmental or chemical insults. Here we investigate the time course of regeneration of hair cells in vivo using electrophysiology, two-photon imaging and immunostaining applied to wild-type and genetically encoded fluorescent indicator zebrafish lines. Functional hair cells drive spontaneous action potentials in the posterior lateral line afferent fibres, the frequency of which progressively increases over the first 10 days post-fertilisation (dpf). Higher firing-rate fibres are only observed from ∼6 dpf. Following copper treatment, newly formed hair cells become functional and are able to drive APs in the afferent fibres within 48 h in both early-larval (≤8 dpf) and late-larval (12-17 dpf) zebrafish. However, the complete functional regeneration of the entire neuromast is delayed in late-larval compared to early-larval zebrafish. We propose that while individual regenerating hair cells can rapidly become active, the acquisition of fully functional neuromasts progresses faster at early-larval stages, a time when hair cells are still under development. At both ages, the afferent terminals in the regenerating neuromast appear to make initial contact with supporting cells. The ablation of the lateral line afferent neurons prevents the timely regeneration of supporting cells and hair cells. These findings indicate that the afferent system is likely to facilitate or promote the neuromast regeneration process.


Assuntos
Sistema da Linha Lateral , Animais , Células Ciliadas Auditivas , Mecanorreceptores , Regeneração , Peixe-Zebra
9.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639129

RESUMO

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system that finally leads to demyelination. Demyelinating optic neuritis is a frequent symptom in MS. Recent studies also revealed synapse dysfunctions in MS patients and MS mouse models. We previously reported alterations of photoreceptor ribbon synapses in the experimental auto-immune encephalomyelitis (EAE) mouse model of MS. In the present study, we found that the previously observed decreased imunosignals of photoreceptor ribbons in early EAE resulted from a decrease in synaptic ribbon size, whereas the number/density of ribbons in photoreceptor synapses remained unchanged. Smaller photoreceptor ribbons are associated with fewer docked and ribbon-associated vesicles. At a functional level, depolarization-evoked exocytosis as monitored by optical recording was diminished even as early as on day 7 after EAE induction. Moreover compensatory, post-depolarization endocytosis was decreased. Decreased post-depolarization endocytosis in early EAE correlated with diminished synaptic enrichment of dynamin3. In contrast, basal endocytosis in photoreceptor synapses of resting non-depolarized retinal slices was increased in early EAE. Increased basal endocytosis correlated with increased de-phosphorylation of dynamin1. Thus, multiple endocytic pathways in photoreceptor synapse are differentially affected in early EAE and likely contribute to the observed synapse pathology in early EAE.


Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Endocitose , Exocitose , Esclerose Múltipla/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Sinapses/patologia , Animais , Dinaminas/metabolismo , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Fosforilação , Retina/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia
10.
J Neurosci ; 39(18): 3394-3411, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833506

RESUMO

Transmitter release at auditory inner hair cell (IHC) ribbon synapses involves exocytosis of glutamatergic vesicles during voltage activation of L-type Cav1.3 calcium channels. At these synapses, the fast and indefatigable release of synaptic vesicles by IHCs is controlled by otoferlin, a six-C2-domain (C2-ABCDEF) protein that functions as a high-affinity Ca2+ sensor. The molecular events by which each otoferlin C2 domain contributes to the regulation of the synaptic vesicle cycle in IHCs are still incompletely understood. Here, we investigate their role using a cochlear viral cDNA transfer approach in vivo, where IHCs of mouse lacking otoferlin (Otof-/- mice of both sexes) were virally transduced with cDNAs of various mini-otoferlins. Using patch-clamp recordings and membrane capacitance measurements, we show that the viral transfer of mini-otoferlin containing C2-ACEF, C2-EF, or C2-DEF partially restores the fast exocytotic component in Otof-/- mouse IHCs. The restoration was much less efficient with C2-ACDF, underlining the importance of the C2-EF domain. None of the mini-otoferlins tested restored the sustained component of vesicle release, explaining the absence of hearing recovery. The restoration of the fast exocytotic component in the transduced Otof-/- IHCs was also associated with a recovery of Ca2+ currents with normal amplitude and fast time inactivation, confirming that the C-terminal C2 domains of otoferlin are essential for normal gating of Cav1.3 channels. Finally, the reintroduction of the mini-otoferlins C2-EF, C2-DEF, or C2-ACEF allowed us to uncover and characterize for the first time a dynamin-dependent ultrafast endocytosis in IHCs.SIGNIFICANCE STATEMENT Otoferlin, a large six-C2-domain protein, is essential for synaptic vesicle exocytosis at auditory hair cell ribbon synapses. Here, we show that the viral expression of truncated forms of otoferlin (C2-EF, C2-DEF, and C2-ACEF) can partially rescue the fast and transient release component of exocytosis in mouse hair cells lacking otoferlin, yet cannot sustain exocytosis after long repeated stimulation. Remarkably, these hair cells also display a dynamin-dependent ultrafast endocytosis. Overall, our study uncovers the pleiotropic role of otoferlin in the hair cell synaptic vesicle cycle, notably in triggering both ultrafast exocytosis and endocytosis and recruiting synaptic vesicles to the active zone.


Assuntos
Endocitose , Exocitose , Células Ciliadas Auditivas/fisiologia , Proteínas de Membrana/fisiologia , Transmissão Sináptica , Estimulação Acústica , Adenoviridae/fisiologia , Animais , Cálcio/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Vetores Genéticos , Masculino , Proteínas de Membrana/genética , Camundongos Knockout , Vesículas Sinápticas/fisiologia
11.
J Physiol ; 598(19): 4339-4355, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710572

RESUMO

KEY POINTS: Age-related hearing loss (ARHL) is associated with the loss of inner hair cell (IHC) ribbon synapses, lower hearing sensitivity and decreased ability to understand speech, especially in a noisy environment. Little is known about the age-related physiological and morphological changes that occur at ribbon synapses. We show that the differing degrees of ARHL in four selected mouse stains is correlated with the loss of ribbon synapses, being most severe for the strains C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ -Repaired and lowest for C3H/HeJ. Despite the loss of ribbon synapses with age, the volume of the remaining ribbons increased and the size and kinetics of Ca2+ -dependent exocytosis in IHCs was unaffected, indicating the presence of a previously unknown degree of functional compensation at ribbon synapses. Although the age-related morphological changes at IHC ribbon synapses contribute to the different progression of ARHL, without the observed functional compensation hearing loss could be greater. ABSTRACT: Mammalian cochlear inner hair cells (IHCs) are specialized sensory receptors able to provide dynamic coding of sound signals. This ability is largely conferred by their ribbon synapses, which tether a large number of vesicles at the IHC's presynaptic active zones, allowing high rates of sustained synaptic transmission onto the afferent fibres. How the physiological and morphological properties of ribbon synapses change with age remains largely unknown. Here, we have investigated the biophysical and morphological properties of IHC ribbon synapses in the ageing cochlea (9-12 kHz region) of four mouse strains commonly used in hearing research: early-onset progressive hearing loss (C57BL/6J and C57BL/6NTac) and 'good hearing' strains (C57BL/6NTacCdh23+ and C3H/HeJ). We found that with age, both modiolar and pillar sides of the IHC exhibited a loss of ribbons, but there was an increased volume of those that remained. These morphological changes, which only occurred after 6 months of age, were correlated with the level of hearing loss in the different mouse strains, being most severe for C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ and absent for C3H/HeJ strains. Despite the age-related reduction in ribbon number in three of the four strains, the size and kinetics of Ca2+ -dependent exocytosis, as well as the replenishment of synaptic vesicles, in IHCs was not affected. The degree of vesicle release at the fewer, but larger, individual remaining ribbon synapses colocalized with the post-synaptic afferent terminals is likely to increase, indicating the presence of a previously unknown degree of functional compensation in the ageing mouse cochlea.


Assuntos
Cóclea , Células Ciliadas Auditivas Internas , Envelhecimento , Animais , Caderinas , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Sinapses
12.
Arch Toxicol ; 93(2): 417-434, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30377733

RESUMO

The cellular and molecular events that precede hair cell (HC) loss in the vestibular epithelium during chronic ototoxic exposure have not been widely studied. To select a study model, we compared the effects of sub-chronic exposure to different concentrations of 3,3'-iminodipropionitrile (IDPN) in the drinking water of two strains of mice and of both sexes. In subsequent experiments, male 129S1/SvImJ mice were exposed to 30 mM IDPN for 5 or 8 weeks; animals were euthanized at the end of the exposure or after a washout period of 13 weeks. In behavioral tests, IDPN mice showed progressive vestibular dysfunction followed by recovery during washout. In severely affected animals, light and electron microscopy observations of the vestibular epithelia revealed HC extrusion towards the endolymphatic cavity. Comparison of functional and ultrastructural data indicated that animals with fully reversible dysfunction did not have significant HC loss or stereociliary damage, but reversible dismantlement of the calyceal junctions that characterize the contact between type I HCs (HCI) and their calyx afferents. Immunofluorescent analysis revealed the loss of calyx junction proteins, Caspr1 and Tenascin-C, during exposure and their recovery during washout. Synaptic uncoupling was also recorded, with loss of pre-synaptic Ribeye and post-synaptic GluA2 puncta, and differential reversibility among the three different kinds of synaptic contacts existing in the epithelium. qRT-PCR analyses demonstrated that some of these changes are at least in part explained by gene expression modifications. We concluded that calyx junction dismantlement and synaptic uncoupling are early events in the mouse vestibular sensory epithelium during sub-chronic IDPN ototoxicity.


Assuntos
Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Vestibulares/efeitos dos fármacos , Nitrilas/toxicidade , Ototoxicidade/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/patologia , Epitélio/ultraestrutura , Feminino , Células Ciliadas Auditivas/patologia , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos , Proteínas do Tecido Nervoso/metabolismo , Ototoxicidade/etiologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Tenascina/metabolismo , Testes de Toxicidade Subcrônica , Vestíbulo do Labirinto/efeitos dos fármacos , Vestíbulo do Labirinto/patologia , Vestíbulo do Labirinto/fisiopatologia
13.
Adv Exp Med Biol ; 1130: 37-57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915700

RESUMO

The synapse between the inner hair cells (IHCs) and the spiral ganglion neurons (SGNs) in mammalian cochleae is characterized as having presynaptic ribbons and therefore is called ribbon synapse. The special molecular organization is reviewed in this chapter in association with the functional feature of this synapse in signal processing. This is followed by the review on noise-induced damage to this synapse with a focus on recent reports in animal models in which the effect of brief noise exposures is observed without causing significant permanent threshold shift (PTS). In this regard, the potential mechanism of the synaptic damage by noise and the impact of this damage on hearing are summarized to clarify the concept of noise-induced hidden hearing loss, which is defined as the functional deficits in hearing without threshold elevation. A controversial issue is addressed in this review as whether the disrupted synapses can be regenerated. Moreover, the review summarizes the work of therapeutic research to protect the synapses or to promote the regeneration of the synapse after initial disruption. Lastly, several unresolved issues are raised for investigation in the future.


Assuntos
Cóclea/patologia , Perda Auditiva Provocada por Ruído , Sinapses/patologia , Animais , Ruído , Regeneração
14.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052288

RESUMO

A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.


Assuntos
Citoesqueleto/metabolismo , Exocitose , Células Receptoras Sensoriais/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Citoesqueleto/ultraestrutura , Humanos , Células Receptoras Sensoriais/ultraestrutura , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/ultraestrutura
15.
Front Cell Neurosci ; 18: 1404440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711617

RESUMO

[This corrects the article DOI: 10.3389/fncel.2023.1281786.].

16.
Front Mol Neurosci ; 17: 1308466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481472

RESUMO

Adaptation of photoreceptor sensitivity to varying light intensities is a fundamental requirement for retinal function and vision. Adaptive mechanisms in signal transduction are well described, but little is known about the mechanisms that adapt the photoreceptor synapse to changing light intensities. The SNARE complex regulators Complexin 3 and Complexin 4 have been proposed to be involved in synaptic light adaptation by limiting synaptic vesicle recruitment and fusion. How this Complexin effect is exerted is unknown. Focusing on rod photoreceptors, we established Complexin 4 as the predominant Complexin in the light-dependent regulation of neurotransmitter release. The number of readily releasable synaptic vesicles is significantly smaller in light than in dark at wildtype compared to Complexin 4 deficient rod photoreceptor ribbon synapses. Electrophysiology indicates that Complexin 4 reduces or clamps Ca2+-dependent sustained synaptic vesicle release, thereby enhancing light signaling at the synapse. Complexin 4 deficiency increased synaptic vesicle release and desensitized light signaling. In a quantitative proteomic screen, we identified Transducin as an interactor of the Complexin 4-SNARE complex. Our results provide evidence for a presynaptic interplay of both Complexin 4 and Transducin with the SNARE complex, an interplay that may facilitate the adaptation of synaptic transmission to light at rod photoreceptor ribbon synapses.

17.
bioRxiv ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38903095

RESUMO

Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This sensory transmission necessitates rapid and sustained neurotransmitter release, which relies on a large pool of synaptic vesicles at the hair-cell presynapse. Work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, but how new synaptic material reaches the presynapse in hair cells is not known. We show that the kinesin motor protein Kif1a and an intact microtubule network are necessary to enrich synaptic vesicles at the presynapse in hair cells. We use genetics and pharmacology to disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. We find that these manipulations decrease synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, along with in vivo calcium imaging and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1a mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Additionally, we find that kif1a mutants exhibit impaired rheotaxis, a behavior reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-based microtubule transport is critical to enrich synaptic vesicles at the active zone in hair cells, a process that is vital for proper ribbon-synapse function.

18.
Toxicol Lett ; 391: 86-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101494

RESUMO

Ototoxicity is a major side effect of aminoglycosides, which can cause irreversible hearing loss. Previous studies on aminoglycoside-induced ototoxicity have primarily focused on the loss of sensory hair cells. Recent investigations have revealed that aminoglycosides can also lead to the loss of ribbon synapses in inner hair cells (IHCs). However, the functional implications of ribbon synapse loss and the underlying mechanisms remain unclear. In this study, we intraperitoneally injected C57BL/6 J mice with 300 mg/kg gentamicin once daily for 3, 10, and 20 days. Then, we performed immunofluorescence staining, patch-clamp recording, proteomics analysis and western blotting to characterize the changes in ribbon synapses in IHCs and the associated mechanisms. After gentamicin treatment, the auditory brainstem response (ABR) threshold was elevated, and the ABR wave I amplitude was decreased. We also observed loss of ribbon synapses in IHCs. Interestingly, ribbon synapse loss occurred on both the modiolar and pillar sides of IHCs. Whole-cell patch-clamp recordings in IHCs revealed a reduction in the calcium current amplitude, along with a shifted half-activation voltage and altered calcium voltage dependency. Moreover, exocytosis of IHCs was reduced, consistent with the reduction in the ABR wave I amplitude. Through proteomic analysis, western blotting, and immunofluorescence staining, we found that gentamicin treatment resulted in downregulation of myosin VI, a protein crucial for synaptic vesicle recycling and replenishment in IHCs. Furthermore, we evaluated the kinetics of endocytosis and found a significant reduction in IHC exocytosis, possibly reflecting the impact of myosin VI downregulation on synaptic vesicle recycling. In summary, our findings demonstrate that gentamicin treatment leads to synaptic dysfunction in IHCs, highlighting the important role of myosin VI downregulation in gentamicin-induced synaptic damage.


Assuntos
Células Ciliadas Auditivas Internas , Ototoxicidade , Animais , Camundongos , Cálcio/metabolismo , Proteômica , Camundongos Endogâmicos C57BL , Sinapses , Gentamicinas/toxicidade , Antibacterianos/toxicidade , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , Cóclea
19.
Am J Transl Res ; 16(1): 272-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322575

RESUMO

Evidence suggests that damage to the ribbon synapses (RS) may be the main cause of auditory dysfunction in noise-induced hearing loss (NIHL). Oxidative stress is implicated in the pathophysiology of synaptic damage. However, the relationship between oxidative stress and RS damage in NIHL remains unclear. To investigate the hypothesis that noise-induced oxidative stress is a key factor in synaptic damage within the inner ear, we conducted a study using mice subjected to single or repeated noise exposure (NE). We assessed auditory function using auditory brainstem response (ABR) test and examined cochlear morphology by immunofluorescence staining. The results showed that mice that experienced a single NE exhibited a threshold shift and recovered within two weeks. The ABR wave I latencies were prolonged, and the amplitudes decreased, suggesting RS dysfunction. These changes were also demonstrated by the loss of RS as evidenced by immunofluorescence staining. However, we observed threshold shifts that did not return to baseline levels following secondary NE. Additionally, ABR wave I latencies and amplitudes exhibited notable changes. Immunofluorescence staining indicated not only severe damage to RS but also loss of outer hair cells. We also noted decreased T-AOC, ATP, and mitochondrial membrane potential levels, alongside increased hydrogen peroxide concentrations post-NE. Furthermore, the expression levels of 4-HNE and 8-OHdG in the cochlea were notably elevated. Collectively, our findings suggest that the production of reactive oxygen species leads to oxidative damage in the cochlea. This mitochondrial dysfunction consequently contributes to the loss of RS, precipitating an early onset of NIHL.

20.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659964

RESUMO

AMPA-type glutamate receptors (AMPAR) mediate excitatory cochlear transmission. However, the unique roles of AMPAR subunits are unresolved. Lack of subunit GluA3 (Gria3KO) in male mice reduced cochlear output by 8-weeks of age. Since Gria3 is X-linked and considering sex differences in hearing vulnerability, we hypothesized accelerated presbycusis in Gria3KO females. Here, auditory brainstem responses (ABR) were similar in 3-week-old female Gria3WT and Gria3KO mice. However, when raised in ambient sound, ABR thresholds were elevated and wave-1 amplitudes were diminished at 5-weeks and older in Gria3KO. In contrast, these metrics were similar between genotypes when raised in quiet. Paired synapses were similar in number, but lone ribbons and ribbonless synapses were increased in female Gria3KO mice in ambient sound compared to Gria3WT or to either genotype raised in quiet. Synaptic GluA4:GluA2 ratios increased relative to Gria3WT, particularly in ambient sound, suggesting an activity-dependent increase in calcium-permeable AMPARs in Gria3KO. Swollen afferent terminals were observed by 5-weeks only in Gria3KO females reared in ambient sound. We propose that lack of GluA3 induces sex-dependent vulnerability to AMPAR-mediated excitotoxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA