Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(46): 15588-15596, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32878986

RESUMO

The principal virulence factor of human pathogenic enterohemorrhagic Escherichia coli is Shiga toxin (Stx). Shiga toxin 2a (Stx2a) is the subtype most commonly associated with severe disease outcomes such as hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A1 subunit (Stx2A1) binds to the conserved elongation factor binding C-terminal domain (CTD) of ribosomal P stalk proteins to inhibit translation. Stx2a holotoxin also binds to the CTD of P stalk proteins because the ribosome-binding site is exposed. We show here that Stx2a binds to an 11-mer peptide (P11) mimicking the CTD of P stalk proteins with low micromolar affinity. We cocrystallized Stx2a with P11 and defined their interactions by X-ray crystallography. We found that the last six residues of P11 inserted into a shallow pocket on Stx2A1 and interacted with Arg-172, Arg-176, and Arg-179, which were previously shown to be critical for binding of Stx2A1 to the ribosome. Stx2a formed a distinct P11-binding mode within a different surface pocket relative to ricin toxin A subunit and trichosanthin, suggesting different ribosome recognition mechanisms for each ribosome inactivating protein (RIP). The binding mode of Stx2a to P11 is also conserved among the different Stx subtypes. Furthermore, the P stalk protein CTD is flexible and adopts distinct orientations and interaction modes depending on the structural differences between the RIPs. Structural characterization of the Stx2a-ribosome complex is important for understanding the role of the stalk in toxin recruitment to the sarcin/ricin loop and may provide a new target for inhibitor discovery.


Assuntos
Peptídeos/metabolismo , Proteínas Ribossômicas/química , Toxina Shiga II/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação Proteica , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Ricina/química , Ricina/metabolismo , Toxina Shiga II/química , Tricosantina/química , Tricosantina/metabolismo
2.
Q Rev Biophys ; 51: e12, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30912488

RESUMO

The large ribosomal subunit has a distinct feature, the stalk, extending outside the ribosome. In bacteria it is called the L12 stalk. The base of the stalk is protein uL10 to which two or three dimers of proteins bL12 bind. In archea and eukarya P1 and P2 proteins constitute the stalk. All these extending proteins, that have a high degree of flexibility due to a hinge between their N- and C-terminal parts, are essential for proper functionalization of some of the translation factors. The role of the stalk proteins has remained enigmatic for decades but is gradually approaching an understanding. In this review we summarise the knowhow about the structure and function of the ribosomal stalk till date starting from the early phase of ribosome research.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas Ativadoras de GTPase/química , Modelos Moleculares , Conformação Proteica , Proteínas Ribossômicas/química
3.
Biochem Biophys Res Commun ; 483(1): 153-158, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28042029

RESUMO

Ribosomes in all organisms contain oligomeric and flexible proteins called stalks, which are responsible for the recruitment of translational GTPase factors to the ribosome. Archaeal ribosomes have three stalk homodimers (aP1)2 that constitute a heptameric complex with the anchor protein aP0. We investigated the factor binding ability of aP1 proteins assembled onto aP0, by gel-retardation assays. The isolated aP0(aP1)2(aP1)2(aP1)2 complex, as well as the form bound to the Escherichia coli 50S core, as a hybrid 50S particle, interacted strongly with elongation factor aEF2, but weakly with aEF1A. These interactions were disrupted by a point mutation, F107S, at the C-terminus of aP1. To examine the ability of each copy of aP0-associated aP1 to bind to elongation factors, we constructed aP0·aP1 variant trimers, composed of an aP0 mutant and a single (aP1)2 dimer. Biochemical and quantitative analyses revealed that the resultant three trimers, aP0(aP1)2I, aP0(aP1)2II, and aP0(aP1)2III, individually bound two molecules of aEF2, suggesting that each copy of the aP1 C-terminal region in the aP0·aP1 trimers can bind tightly to aEF2. Interestingly, the unstable binding of aEF1A to each of the three aP0·aP1 trimers was remarkably stabilized in the presence of aEF2. The stability of the aEF1A binding to the stalk complex may be affected by the presence of aEF2 bound to the complex, by an unknown mechanism.


Assuntos
Proteínas Arqueais/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Mutação , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Multimerização Proteica , Pyrococcus horikoshii/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/metabolismo
4.
Biochim Biophys Acta ; 1850(1): 150-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450178

RESUMO

BACKGROUND: The ribosomal stalk composed of P-proteins constitutes a structure on the large ribosomal particle responsible for recruitment of translation factors and stimulation of factor-dependent GTP hydrolysis during translation. The main components of the stalk are P-proteins, which form a pentamer. Despite the conserved basic function of the stalk, the P-proteins do not form a uniform entity, displaying heterogeneity in the primary structure across the eukaryotic lineage. The P-proteins from protozoan parasites are among the most evolutionarily divergent stalk proteins. METHODS: We have assembled P-stalk complex of Plasmodium falciparum in vivo in bacterial system using tricistronic expression cassette and provided its characteristics by biochemical and biophysical methods. RESULTS: All three individual P-proteins, namely uL10/P0, P1 and P2, are indispensable for acquisition of a stable structure of the P stalk complex and the pentameric uL10/P0-(P1-P2)2form represents the most favorable architecture for parasite P-proteins. CONCLUSION: The formation of P. falciparum P-stalk is driven by trilateral interaction between individual elements which represents unique mode of assembling, without stable P1-P2 heterodimeric intermediate. GENERAL SIGNIFICANCE: On the basis of our mass-spectrometry analysis supported by the bacterial two-hybrid assay and biophysical analyses, a unique pathway of the parasite stalk assembling has been proposed. We suggest that the absence of P1/P2 heterodimer, and the formation of a stable pentamer in the presence of all three proteins, indicate a one-step formation to be the main pathway for the vital ribosomal stalk assembly, whereas the P2 homo-oligomer may represent an off-pathway product with physiologically important nonribosomal role.


Assuntos
Fosfoproteínas/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Plasmodium falciparum/genética , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
5.
Artigo em Inglês | MEDLINE | ID: mdl-24192371

RESUMO

The lateral P stalk in archaeal/eukaryotic ribosomes and the L12 stalk in bacterial ribosomes play a pivotal role in specific binding to the ribosome and recruiting translational factors during protein biosynthesis. The P stalk consists of the ribosomal proteins L11, P0 and P1. The proteins P0 and P1 form the complex that binds 23S rRNA through the N-terminal domain of the P0 protein. Ribosomal protein L11 binds to the same region of 23S rRNA and together with the protein P0 forms the base of the stalk. The structure of the ribosomal protein L11 from archaea has been solved, but with several missing segments. Here, the preparation and crystallization of a ternary complex consisting of the ribosomal protein L11, the two-domain N-terminal fragment of the ribosomal protein P0 and a specific fragment of 23S rRNA from the archaeon Methanococcus jannaschii are reported. The crystals belonged to the monoclinic space group P2(1), with unit-cell parameters a = 72.4, b = 88.5, c = 95.2 Å, ß = 102.2°. A complete diffraction data set has been collected to a resolution of 2.9 Šusing an in-house rotating-anode X-ray generator.


Assuntos
Methanocaldococcus/metabolismo , Ribossomos/química , Proteínas Arqueais/química , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , RNA Ribossômico/química , Proteínas Ribossômicas/química
6.
FEBS Lett ; 595(17): 2221-2236, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34328639

RESUMO

The ribosome is subjected to post-translational modifications, including phosphorylation, that affect its biological activity. Among ribosomal elements, the P-proteins undergo phosphorylation within the C terminus, the element which interacts with trGTPases or ribosome-inactivating proteins (RIPs); however, the role of phosphorylation has never been elucidated. Here, we probed the function of phosphorylation on the interaction of P-proteins with RIPs using the ribosomal P1-P2 dimer. We determined the kinetic parameters of the interaction with the toxins using biolayer interferometry and microscale thermophoresis. The results present the first mechanistic insight into the function of P-protein phosphorylation, showing that introduction of a negative charge into the C terminus of P1-P2 proteins promotes α-helix formation and decreases the affinity of the P-proteins for the RIPs.


Assuntos
Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Toxinas Biológicas/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Simulação de Acoplamento Molecular , Fosfoproteínas/genética , Fosforilação , Domínios Proteicos , Proteínas Ribossômicas/genética , Ricina/química , Ricina/metabolismo , Serina/metabolismo , Toxinas Biológicas/química , Tricosantina/química , Tricosantina/metabolismo
7.
FEBS Lett ; 594(18): 3002-3019, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32668052

RESUMO

The uL10 protein is the main constituent of the ribosomal P-stalk, anchoring the whole stalk to the ribosome through interactions with rRNA. The P-stalk is the core of the GTPase-associated center (GAC), a critical element for ribosome biogenesis and ribosome translational activity. All P-stalk proteins (uL10, P1, and P2) undergo phosphorylation within their C termini. Here, we show that uL10 has multiple phosphorylation sites, mapped also within the N-terminal rRNA-binding domain. Our results reveal that the introduction of a negative charge within the N terminus of uL10 impairs its association with the ribosome. These findings demonstrate that uL10 N-terminal phosphorylation has regulatory potential governing the uL10 interaction with the ribosome and may control the activity of GAC.


Assuntos
RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Células HeLa , Humanos , Fosforilação , Domínios Proteicos , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética
8.
Toxins (Basel) ; 10(8)2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127254

RESUMO

Trichosanthin (TCS) is an RNA N-glycosidase that depurinates adenine-4324 in the conserved α-sarcin/ricin loop (α-SRL) of rat 28 S ribosomal RNA (rRNA). TCS has only one chain, and is classified as type 1 ribosome-inactivating protein (RIP). Our structural studies revealed that TCS consists of two domains, with five conserved catalytic residues Tyr70, Tyr111, Glu160, Arg163 and Phe192 at the active cleft formed between them. We also found that the structural requirements of TCS to interact with the ribosomal stalk protein P2 C-terminal tail. The structural analyses suggest TCS attacks ribosomes by first binding to the C-terminal domain of ribosomal P protein. TCS exhibits a broad spectrum of biological and pharmacological activities including anti-tumor, anti-virus, and immune regulatory activities. This review summarizes an updated knowledge in the structural and functional studies and the mechanism of its multiple pharmacological effects.


Assuntos
Antineoplásicos , Antivirais , Fatores Imunológicos , Tricosantina , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Conformação Proteica , Tricosantina/química , Tricosantina/farmacologia , Tricosantina/uso terapêutico
9.
Mol Cell Biol ; 37(17)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28606931

RESUMO

The P-stalk represents a vital element within the ribosomal GTPase-associated center, which represents a landing platform for translational GTPases. The eukaryotic P-stalk exists as a uL10-(P1-P2)2 pentameric complex, which contains five identical C-terminal domains, one within each protein, and the presence of only one such element is sufficient to stimulate factor-dependent GTP hydrolysis in vitro and to sustain cell viability. The functional contribution of the P-stalk to the performance of the translational machinery in vivo, especially the role of P-protein multiplication, has never been explored. Here, we show that ribosomes depleted of P1/P2 proteins exhibit reduced translation fidelity at elongation and termination steps. The elevated rate of the decoding error is inversely correlated with the number of the P-proteins present on the ribosome. Unexpectedly, the lack of P1/P2 has little effect in vivo on the efficiency of other translational GTPase (trGTPase)-dependent steps of protein synthesis, including translocation. We have shown that loss of accuracy of decoding caused by P1/P2 depletion is the major cause of translation slowdown, which in turn affects the metabolic fitness of the yeast cell. We postulate that the multiplication of P-proteins is functionally coupled with the qualitative aspect of ribosome action, i.e., the recoding phenomenon shaping the cellular proteome.


Assuntos
Polirribossomos/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fosfoproteínas/metabolismo , Estrutura Terciária de Proteína/fisiologia , Proteoma/metabolismo , Proteínas Ribossômicas/química
10.
Cell Cycle ; 15(8): 1060-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26939941

RESUMO

The ribosomal GTPase associated center constitutes the ribosomal area, which is the landing platform for translational GTPases and stimulates their hydrolytic activity. The ribosomal stalk represents a landmark structure in this center, and in eukaryotes is composed of uL11, uL10 and P1/P2 proteins. The modus operandi of the uL11 protein has not been exhaustively studied in vivo neither in prokaryotic nor in eukaryotic cells. Using a yeast model, we have brought functional insight into the translational apparatus deprived of uL11, filling the gap between structural and biochemical studies. We show that the uL11 is an important element in various aspects of 'ribosomal life'. uL11 is involved in 'birth' (biogenesis and initiation), by taking part in Tif6 release and contributing to ribosomal subunit-joining at the initiation step of translation. uL11 is particularly engaged in the 'active life' of the ribosome, in elongation, being responsible for the interplay with eEF1A and fidelity of translation and contributing to a lesser extent to eEF2-dependent translocation. Our results define the uL11 protein as a critical GAC element universally involved in trGTPase 'productive state' stabilization, being primarily a part of the ribosomal element allosterically contributing to the fidelity of the decoding event.


Assuntos
Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Mutação/genética , Polirribossomos/metabolismo , Subunidades Proteicas/metabolismo , Processamento Pós-Transcricional do RNA/genética
11.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 8): 1083-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26249704

RESUMO

Ribosomal protein L11 is an important part of the GTPase-associated centre in ribosomes of all organisms. L11 is a highly conserved two-domain ribosomal protein. The C-terminal domain of L11 is an RNA-binding domain that binds to a fragment of 23S rRNA and stabilizes its structure. The complex between L11 and 23S rRNA is involved in the GTPase activity of the translation elongation and release factors. Bacterial and archaeal L11-rRNA complexes are targets for peptide antibiotics of the thiazole class. To date, there is no complete structure of archaeal L11 owing to the mobility of the N-terminal domain of the protein. Here, the crystallization and X-ray analysis of the ribosomal protein L11 from Methanococcus jannaschii are reported. Crystals of the native protein and its selenomethionine derivative belonged to the orthorhombic space group I222 and were suitable for structural studies. Native and single-wavelength anomalous dispersion data sets have been collected and determination of the structure is in progress.


Assuntos
Proteínas Arqueais/química , RNA Ribossômico 23S/química , Proteínas Ribossômicas/química , Proteínas Arqueais/genética , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Methanocaldococcus/química , Methanocaldococcus/metabolismo , RNA Ribossômico 23S/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Ribossômicas/genética , Selenometionina/química , Selenometionina/metabolismo
12.
Int J Biochem Cell Biol ; 69: 233-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26494001

RESUMO

Protein Mrt4 is one of trans-acting factors involved in ribosome biogenesis, which in higher eukaryotic cells contains a C-terminal extension similar to the C-terminal part of ribosomal P proteins. We show that human Mrt4 (hMrt4/MRTO4) undergoes phosphorylation in vivo and that serines S229, S233, and S235, placed within its acidic C-termini, have been phosphorylated by CK2 kinase in vitro. Such modification does not alter the subcellular distribution of hMrt4 in standard conditions but affects its molecular behavior during ActD induced nucleolar stress. Thus, we propose a new regulatory element important for the stress response pathway connecting ribosome biogenesis with cellular metabolism.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Caseína Quinase II/química , Células HeLa , Humanos , Dados de Sequência Molecular , Fosforilação , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Ribossômicas/química , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA