Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Environ Manage ; 367: 122062, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096722

RESUMO

Reticular river networks, essential for ecosystems and hydrology, pose challenges in assessing longitudinal connectivity due to complex multi-path structures and variable flows, exacerbated by human-made infrastructures like sluices. Existing tools inadequately track water flow's spatiotemporal changes, highlighting the need for targeted methods to gauge connectivity within complex river network systems. The Hydraulic Capacity Connectivity Index (HCCI) was developed adopting complex network theory. This involves river networks mapping, nodes and edges construstion, weight factor definition, maximum flow and resistance distance calculation. The connectivity between nodes is represented by the product of the maximum flow and the inverse of the resistance distance. The mean connectivity of each node with all other nodes, denoted as the node connectivity capacity Ci, and the HCCI of the whole river network is defined as the mean of the Ci for all nodes. The HCCI was firstly applied to a symmetrical virtual river network to investigate the factors influencing the HCCI. The results revealed that Ci showed a radial decreasing pattern from the obstructed river reach outwards, and the boundary rivers play the most significant role in regulating the flow dynamics. Subsequently, the HCCI was applied to a real river network in the Yandu district, followed by spatiotemporal statistical analysis comparing with 1D hydraulic model's simulated river discharge. Results showed a high correlation (Pearson coefficient of 0.89) between the HCCI and monthly average river discharge at the global scale. At the local scale, the geographically weighted regression model demonstrated the strong explanatory power of Ci in predicting the distribution of river reach discharge. This suggests that the HCCI addresses multi-path connectivity assessment challenge in reticular river networks, precisely characterizing spatiotemporal flow dynamics. Furthermore, since HCCI is based on a complex network model that can calculate the connectivity between all river node pairs, it is theoretically applicable to other types of river networks, such as dendritic river networks. By identifying low-connectivity areas, HCCI can guide managers in developing scientifically sound and effective strategies for restoring river network hydrodynamics. This can help prevent water stagnation and degradation of water quality, which is beneficial for environmental protection and water resource management.


Assuntos
Hidrologia , Rios , Ecossistema , Movimentos da Água , Modelos Teóricos
2.
J Am Water Resour Assoc ; 60(1): 57-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377341

RESUMO

Many cold-water dependent aquatic organisms are experiencing habitat and population declines from increasing water temperatures. Identifying mechanisms which drive local and regional stream thermal regimes facilitates restoration at ecologically relevant scales. Stream temperatures vary spatially and temporally both within and among river basins. We developed a modeling process to identify statistical relationships between drivers of stream temperature and covariates representing landscape, climate, and management-related processes. The modeling process was tested in 3 study areas of the Pacific Northwest USA during the growing season (May [start], August [warmest], September [end]). Across all months and study systems, covariates with the highest relative importance represented the physical landscape (elevation [1st], catchment area [3rd], main channel slope [5th]) and climate covariates (mean monthly air temperature [2nd] and discharge [4th]). Two management covariates (ground water use [6th] and riparian shade [7th]) also had high relative importance. Across the growing season (for all basins) local reach slope had high relative importance in May, but transitioned to a regional main channel slope covariate in August and September. This modeling process identified regionally similar and locally unique relationships among drivers of stream temperature. High relative importance of management-related covariates suggested potential restoration actions for each system.

3.
Proc Natl Acad Sci U S A ; 117(3): 1375-1382, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31915292

RESUMO

The hierarchy of channel networks in landscapes displays features that are characteristic of nonequilibrium complex systems. Here we show that a sequence of increasingly complex ridge and valley networks is produced by a system of partial differential equations coupling landscape evolution dynamics with a specific catchment area equation. By means of a linear stability analysis we identify the critical conditions triggering channel formation and the emergence of characteristic valley spacing. The ensuing channelization cascade, described by a dimensionless number accounting for diffusive soil creep, runoff erosion, and tectonic uplift, is reminiscent of the subsequent instabilities in fluid turbulence, while the structure of the simulated patterns is indicative of a tendency to evolve toward optimal configurations, with anomalies similar to dislocation defects observed in pattern-forming systems. The choice of specific geomorphic transport laws and boundary conditions strongly influences the channelization cascade, underlying the nonlocal and nonlinear character of its dynamics.

4.
Glob Chang Biol ; 28(16): 4807-4818, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35596718

RESUMO

Mountain watersheds often contain a mosaic of glacier-, snow-, and rain-fed streams that have distinct hydrologic, temperature, and biogeochemical regimes. However, as glaciers diminish and precipitation shifts from snow to rain, the physical and chemical characteristics that make glacial or snowmelt streams distinct from rain-fed streams will fade. Among the unforeseen consequences of this hydrologic homogenization could be the loss of unique food webs that sustain aquatic consumers. To explore the impacts of a melting cryosphere on stream food webs, we parameterized an aquatic food web model with empirical physicochemical data from glacier-, snow-, and rain-fed streams in southeast Alaska and used the model to simulate the seasonal biomass dynamics of aquatic primary producers and consumers and the growth of juvenile salmon. Model results suggest that glacier-, snow-, and rain-fed streams exhibit seasonal asynchronies in the timing of biofilm and aquatic invertebrate abundance. Although warmer rain-fed streams were more productive during the summer (June through September), colder glacial and snowmelt streams provided enhanced foraging and growth opportunities throughout the remainder of the year. For juvenile salmon that can track peaks in resource abundance within river networks, the loss of meltwater streams strongly constrained modeled growth opportunities by removing spatially and temporally distinct foraging habitats within a watershed. These findings suggest that climate change induced homogenization of high latitude river networks may result in the loss of unique food web dynamics, which could diminish the capacity of watersheds to sustain mobile consumers.


Assuntos
Cadeia Alimentar , Rios , Animais , Mudança Climática , Ecossistema , Peixes , Camada de Gelo , Salmão , Estações do Ano
5.
Environ Sci Technol ; 56(7): 4231-4240, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298143

RESUMO

Surface water monitoring and microbial source tracking (MST) are used to identify host sources of fecal pollution and protect public health. However, knowledge of the locations of spatial sources and their relative impacts on the environment is needed to effectively mitigate health risks. Additionally, sediment samples may offer time-integrated information compared to transient surface water. Thus, we implemented the newly developed microbial find, inform, and test framework to identify spatial sources and their impacts on human (HuBac) and bovine (BoBac) MST markers, quantified from both riverbed sediment and surface water in a bovine-dense region. Dairy feeding operations and low-intensity developed land-cover were associated with 99% (p-value < 0.05) and 108% (p-value < 0.05) increases, respectively, in the relative abundance of BoBac in sediment, and with 79% (p-value < 0.05) and 39% increases in surface water. Septic systems were associated with a 48% increase in the relative abundance of HuBac in sediment and a 56% increase in surface water. Stronger source signals were observed for sediment responses compared to water. By defining source locations, predicting river impacts, and estimating source influence ranges in a Great Lakes region, this work informs pollution mitigation strategies of local and global significance.


Assuntos
Microbiologia da Água , Poluição da Água , Animais , Bovinos , Monitoramento Ambiental , Fezes , Humanos , Rios , Água
6.
Proc Natl Acad Sci U S A ; 116(27): 13434-13439, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209040

RESUMO

Identifying the drivers and processes that determine globally the geographic range size of species is crucial to understanding the geographic distribution of biodiversity and further predicting the response of species to current global changes. However, these drivers and processes are still poorly understood, and no ecological explanation has emerged yet as preponderant in explaining the extent of species' geographical range. Here, we identify the main drivers of the geographic range size variation in freshwater fishes at global and biogeographic scales and determine how these drivers affect range size both directly and indirectly. We tested the main hypotheses already proposed to explain range size variation, using geographic ranges of 8,147 strictly freshwater fish species (i.e., 63% of all known species). We found that, contrary to terrestrial organisms, for which climate and topography seem preponderant in determining species' range size, the geographic range sizes of freshwater fishes are mostly explained by the species' position within the river network, and by the historical connection among river basins during Quaternary low-sea-level periods. Large-ranged fish species inhabit preferentially lowland areas of river basins, where hydrological connectivity is the highest, and also are found in river basins that were historically connected. The disproportionately high explanatory power of these two drivers suggests that connectivity is the key component of riverine fish geographic range sizes, independent of any other potential driver, and indicates that the accelerated rates in river fragmentation might strongly affect fish species distribution and freshwater biodiversity.


Assuntos
Peixes , Animais , Biodiversidade , Demografia , Ecossistema , Água Doce , Geografia , Hidrologia , Rios
7.
Environ Sci Technol ; 55(15): 10451-10461, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34291905

RESUMO

Microbial pollution in rivers poses known ecological and health risks, yet causal and mechanistic linkages to sources remain difficult to establish. Host-associated microbial source tracking (MST) markers help to assess the microbial risks by linking hosts to contamination but do not identify the source locations. Land-use regression (LUR) models have been used to screen the source locations using spatial predictors but could be improved by characterizing transport (i.e., hauling, decay overland, and downstream). We introduce the microbial Find, Inform, and Test (FIT) framework, which expands previous LUR approaches and develops novel spatial predictor models to characterize the transported contributions. We applied FIT to characterize the sources of BoBac, a ruminant Bacteroides MST marker, quantified in riverbed sediment samples from Kewaunee County, Wisconsin. A 1 standard deviation increase in contributions from land-applied manure hauled from animal feeding operations (AFOs) was associated with a 77% (p-value <0.05) increase in the relative abundance of ruminant Bacteroides (BoBac-copies-per-16S-rRNA-copies) in the sediment. This is the first work finding an association between the upstream land-applied manure and the offsite bovine-associated fecal markers. These findings have implications for the sediment as a reservoir for microbial pollution associated with AFOs (e.g., pathogens and antibiotic-resistant bacteria). This framework and application advance statistical analysis in MST and water quality modeling more broadly.


Assuntos
Microbiologia da Água , Poluição da Água , Animais , Bacteroides , Bovinos , Monitoramento Ambiental , Fezes , Ruminantes , Poluição da Água/análise
8.
Glob Chang Biol ; 26(12): 6867-6879, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32936984

RESUMO

Human-induced global change dramatically alters individual aspects of river biodiversity, such as taxonomic, phylogenetic or functional diversity, and is predicted to lead to losses of associated ecosystem functions. Understanding these losses and dependencies are critical to human well-being. Until now, however, most studies have only looked either at individual organismal groups or single functions, and little is known on the effect of human activities on multitrophic biodiversity and on ecosystem multifunctionality in riverine ecosystem. Here we profiled biodiversity from bacteria to invertebrates based on environmental DNA (hereafter, 'eDNA') samples across a major river catchment in China, and analysed their dependencies with multiple ecosystem functions, especially linked to C/N/P-cycling. Firstly, we found a spatial cross-taxon congruence pattern of communities' structure in the network of the Shaying river, which was related to strong environmental filtering due to human land use. Secondly, human land use explained the decline of multitrophic and multifaceted biodiversity and ecosystem functions, but increased functional redundancy in the riverine ecosystem. Thirdly, biodiversity and ecosystem function relationships at an integrative level showed a concave-up (non-saturating) shape. Finally, structural equation modeling suggested that land use affects ecosystem functions through biodiversity-mediated pathways, including biodiversity loss and altered community interdependence in multitrophic groups. Our study highlights the value of a complete and inclusive assessment of biodiversity and ecosystem functions for an integrated land-use management of riverine ecosystems.


Assuntos
Ecossistema , Rios , Animais , Biodiversidade , China , Atividades Humanas , Humanos , Filogenia
9.
J Am Water Resour Assoc ; 54: 346-371, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34887654

RESUMO

We reviewed the scientific literature on non-floodplain wetlands (NFWs), freshwater wetlands typically located distal to riparian and floodplain systems, to determine hydrological, physical, and chemical functioning and stream and river network connectivity. We assayed the literature for source, sink, lag, and transformation functions, as well as factors affecting connectivity. We determined NFWs are important landscape components, hydrologically, physically, and chemically affecting downstream aquatic systems. NFWs are hydrologic and chemical sources for other waters, hydrologically connecting across long distances and contributing compounds such as methylated mercury and dissolved organic matter. NFWs reduced flood peaks and maintained baseflows in stream and river networks through hydrologic lag and sink functions, and sequestered or assimilated substantial nutrient inputs through chemical sink and transformative functions. Landscape-scale connectivity of NFWs affects water and material fluxes to downstream river networks, substantially modifying the characteristics and function of downstream waters. Many factors determine the effects of NFW hydrological, physical, and chemical functions on downstream systems, and additional research quantifying these factors and impacts is warranted. We conclude NFWs are hydrologically, chemically, and physically interconnected with stream and river networks though this connectivity varies in frequency, duration, magnitude, and timing.

10.
J Am Water Resour Assoc ; 54(2): 323-345, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30245566

RESUMO

Streams, riparian areas, floodplains, alluvial aquifers and downstream waters (e.g., large rivers, lakes, oceans) are interconnected by longitudinal, lateral, and vertical fluxes of water, other materials and energy. Collectively, these interconnected waters are called fluvial hydrosystems. Physical and chemical connectivity within fluvial hydrosystems is created by the transport of nonliving materials (e.g., water, sediment, nutrients, contaminants) which either do or do not chemically change (chemical and physical connections, respectively). A substantial body of evidence unequivocally demonstrates physical and chemical connectivity between streams and riparian wetlands and downstream waters. Streams and riparian wetlands are structurally connected to downstream waters through the network of continuous channels and floodplain form that make these systems physically contiguous, and the very existence of these structures provides strong geomorphologic evidence for connectivity. Functional connections between streams and riparian wetlands and their downstream waters vary geographically and over time, based on proximity, relative size, environmental setting, material disparity, and intervening units. Because of the complexity and dynamic nature of connections among fluvial hydrosystem units, a complete accounting of the physical and chemical connections and their consequences to downstream waters should aggregate over multiple years to decades.

11.
Ecol Appl ; 27(7): 2209-2219, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28718193

RESUMO

An often-cited benefit of river restoration is an increase in biodiversity or shift in composition to more desirable taxa. Yet, hard manipulations of habitat structure often fail to elicit a significant response in terms of biodiversity patterns. In contrast to conventional wisdom, the dispersal of organisms may have as large an influence on biodiversity patterns as environmental conditions. This influence of dispersal may be particularly influential in river networks that are linear branching, or dendritic, and thus constrain most dispersal to the river corridor. As such, some locations in river networks, such as isolated headwaters, are expected to respond less to environmental factors and less by dispersal than more well-connected downstream reaches. We applied this metacommunity framework to study how restoration drives biodiversity patterns in river networks. By comparing assemblage structure in headwater vs. more well-connected mainstem sites, we learned that headwater restoration efforts supported higher biodiversity and exhibited more stable ecological communities compared with adjacent, unrestored reaches. Such differences were not evident in mainstem reaches. Consistent with theory and mounting empirical evidence, we attribute this finding to a relatively higher influence of dispersal-driven factors on assemblage structure in more well-connected, higher order reaches. An implication of this work is that, if biodiversity is to be a goal of restoration activity, such local manipulations of habitat should elicit a more profound response in small, isolated streams than in larger downstream reaches. These results offer another significant finding supporting the notion that restoration activity cannot proceed in isolation of larger-scale, catchment-level degradation.


Assuntos
Biota , Conservação dos Recursos Naturais , Rios , Baltimore , Biodiversidade , Geografia , Modelos Biológicos
12.
J Fish Biol ; 90(2): 528-548, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27615608

RESUMO

Radiogenic strontium isotope ratios (87 Sr:86 Sr) in otoliths were compared with isotope ratios predicted from models and observed in water sampling to reconstruct the movement histories of smallmouth bass Micropterus dolomieu between main-river and adjacent tributary habitats. A mechanistic model incorporating isotope geochemistry, weathering processes and basin accumulation reasonably predicted observed river 87 Sr:86 Sr across the study area and provided the foundations for experimental design and inferring fish provenance. Exchange between rivers occurred frequently, with nearly half (48%) of the 209 individuals displaying changes in otolith 87 Sr:86 Sr reflecting movement between isotopically distinct rivers. The majority of between-river movements occurred in the first year and often within the first few months of life. Although more individuals were observed moving from the main river into tributaries, this pattern did not necessarily reflect asymmetry in exchange. Several individuals made multiple movements between rivers over their lifetimes; no patterns were found, however, that suggest seasonal or migratory movement. The main-river sport fishery is strongly supported by recruitment from tributary spawning, as 26% of stock size individuals in the main river were spawned in tributaries. The prevailing pattern of early juvenile dispersal documented in this study has not been observed previously for this species and suggests that the process of establishing seasonal home-range areas occurs up to 2 years earlier than originally hypothesized. Extensive exchange between rivers would have substantial implications for management of M. dolomieu populations in river-tributary networks.


Assuntos
Distribuição Animal , Bass/fisiologia , Ecossistema , Membrana dos Otólitos/química , Animais , Conservação dos Recursos Naturais , Modelos Teóricos , Rios/química , Radioisótopos de Estrôncio
13.
J Environ Manage ; 180: 164-71, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27219462

RESUMO

The pollution of rivers due to accidental spills is a major threat to environment and human health. To protect river systems from accidental spills, it is essential to introduce a reliable tool for identification process. Backward Probability Method (BPM) is one of the most recommended tools that is able to introduce information related to the prior location and the release time of the pollution. This method was originally developed and employed in groundwater pollution source identification problems. One of the objectives of this study is to apply this method in identifying the pollution source location and release time in surface waters, mainly in rivers. To accomplish this task, a numerical model is developed based on the adjoint analysis. Then the developed model is verified using analytical solution and some real data. The second objective of this study is to extend the method to pollution source identification in river networks. In this regard, a hypothetical test case is considered. In the later simulations, all of the suspected points are identified, using only one backward simulation. The results demonstrated that all suspected points, determined by the BPM could be a possible pollution source. The proposed approach is accurate and computationally efficient and does not need any simplification in river geometry and flow. Due to this simplicity, it is highly recommended for practical purposes.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea , Modelos Teóricos , Rios , Poluentes Químicos da Água/química , Inglaterra , Poluição Ambiental , Geografia , Humanos , Probabilidade , Fatores de Tempo , Poluição da Água/prevenção & controle
14.
Ecol Lett ; 17(3): 273-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24304967

RESUMO

Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations.


Assuntos
Ecossistema , Modelos Biológicos , Dinâmica Populacional , Rios , Simulação por Computador , Especificidade da Espécie
15.
Mol Ecol ; 23(23): 5663-79, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25327780

RESUMO

We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage.


Assuntos
Conservação dos Recursos Naturais , Peixes/genética , Variação Genética , Genética Populacional , Animais , Biota , Meio Ambiente , Peixes/classificação , Repetições de Microssatélites , América do Norte , Rios , Análise de Sequência de DNA
16.
Water Res ; 211: 118057, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066261

RESUMO

Bacterioplankton play an important role in the biogeochemical cycling in rivers. The dynamics of hydrologic conditions in rivers were believed to affect geographic pattern and assembly process of these microorganisms, which have not been widely investigated. In this study, the geographic pattern and assembly process of bacterioplankton community in river networks of the Taihu Basin were systematically explored using amplicon sequencing of the 16S rRNA gene. The results showed that the diversity, structure,  and taxonomic composition of bacterioplankton community all exhibited significant temporal variation during wet, normal, and dry seasons (p<0.01). The neutral community model and null model were applied to reveal the assembly process of bacterioplankton community. The stochastic process and deterministic process both shaped the bacterioplankton community with greater influence of deterministic process. In addition, the abundant and rare bacterioplankton communities were comparatively analyzed. The abundant and rare bacterioplankton communities exhibited similar temporal dynamics (principal coordinates analysis) and spatial variations (distance-decay relationship), indicating similar geographic patterns. Meanwhile, distinct assembly processes were observed for the abundant and rare bacterioplankton communities. Stochastic process (dispersal limitation) shaped the abundant bacterioplankton community while deterministic process (heterogeneous selection) dominated the assembly process of rare bacterioplankton community. Mantel test, redundancy analysis, and correlation analysis together indicated that pH and dissolved oxygen were the major environmental attributes that affected thestructure and assembly process of bacterioplankton community. These results expanded our understanding of the geographic pattern, assembly process, and driving factors of bacterioplankton community in river networks and provided clues for the underlying mechanisms.


Assuntos
Ecossistema , Rios , Organismos Aquáticos , China , RNA Ribossômico 16S/genética , Estações do Ano
17.
Front Microbiol ; 13: 1074316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605517

RESUMO

Denitrifying anaerobic methane-oxidizing bacteria (DAMO bacteria) plays an important role in reducing methane emissions from river ecosystems. However, the assembly process of their communities underlying different hydrologic seasons remains unclarified. In this study, the dynamics of DAMO bacterial communities in river networks of the Taihu Basin were investigated by amplicon sequencing across wet, normal, and dry seasons followed by multiple statistical analyses. Phylogenetic analysis showed that Group B was the major subgroup of DAMO bacteria and significant dynamics for their communities were observed across different seasons (constrained principal coordinate analysis, p = 0.001). Furthermore, the neutral community model and normalized stochasticity ratio model were applied to reveal the underlying assembly process. Stochastic process and deterministic process dominated the assembly process in wet season and normal season, respectively and similar contributions of deterministic and stochastic processes were observed in dry season. Meanwhile, abundant (relative abundance >0.1%) and rare (relative abundance <0.01%) DAMO bacterial communities were found to be shaped via distinct assembly processes. Deterministic and stochastic processes played a considerable role in shaping abundant DAMO bacterial communities, while deterministic process mainly shaped rare DAMO bacterial communities. Results of this study revealed the dynamics of DAMO bacterial communities in river networks and provided a theoretical basis for further understanding of the assembly process.

18.
Sci Total Environ ; 834: 155293, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447183

RESUMO

River networks play important roles in dissemination of antibiotic resistance genes (ARGs). The occurrence, diversity, and abundance of ARGs in river networks have been widely investigated. However, the assembly processes that shaped ARGs profiles across space and time are largely unknown. Here, the dynamics of ARGs profiles in river networks (Taihu Basin) were revealed by high-throughput quantitative PCR followed by multiple statistical analyses to assess the underlying ecological processes. The results revealed clear variations for ARGs profiles across wet, normal, and dry seasons. Meanwhile, a significant negative correlation (p < 0.01) was observed between the similarity of ARGs profiles and geographic distance, indicating ARGs profiles exhibited distance-decay patterns. Null model analysis showed that ARGs profiles were mainly assembled via deterministic processes. Redundancy analysis followed by hierarchical partitioning revealed that environmental attributes (mainly pH and temperature) were the major factors affecting the dynamics of ARGs profiles. Together, these results indicated that environmental filtering was the dominant ecological process that shaped ARGs profiles. This study enhances our understanding how the antibiotic resistome is assembled in river networks and will be beneficial for the development of management strategies to control ARGs dissemination.


Assuntos
Antibacterianos , Rios , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Estações do Ano
19.
Water Res ; 217: 118382, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35413560

RESUMO

There is significant debate about why less than half of European rivers and streams are in good ecological status, despite decades of intense regulatory efforts. Of the multiple stressors that are recognized as potential contributors to stream degradation, we focus on discharge from 26,500 European wastewater treatment plants (WWTPs). We tested the hypothesis that stream ecological status degradation across Europe is related to the local intensity of wastewater discharge, with an expected stream-order (ω) dependence based on the scaling laws that govern receiving stream networks. We found that ecological status in streams (ω≤3) declined consistently with increasing urban wastewater discharge fraction of stream flow (UDF) across river types and basins. In contrast, ecological status in larger rivers (ω≥4) was not related to UDF. From a continental-scale logistic regression model (accuracy 86%) we identified an ecologically critical threshold UDF = 6.5% ± 0.5. This is exceeded by more than one third of WWTPs in Europe, mostly discharging into smaller streams. Our results suggest that new receiving water-specific strategies for wastewater management are needed to achieve good ecological status in smaller streams.


Assuntos
Ecossistema , Purificação da Água , Monitoramento Ambiental/métodos , Rios , Águas Residuárias
20.
Artigo em Inglês | MEDLINE | ID: mdl-36011931

RESUMO

Carbon dioxide (CO2) emissions from river water have sparked worldwide concerns due to supersaturate CO2 levels in the majority of global rivers, while the knowledge on the associations among nitrogen pollution, urbanization, and CO2 emissions is still limited. In this study, the CO2 partial pressure (pCO2), carbon and nitrogen species, and water parameters in sewage-draining river networks were investigated. Extremely high pCO2 levels were observed in sewage and drainage river waters, such as Longfeng River, Beijing-drainage River, and Beitang-drainage River, which were approximately 4 times higher than the averaged pCO2 in worldwide rivers. Correlations of carbon/nitrogen species and pCO2 indicated that carbon dioxide in rural rivers and sewage waters primarily originated from soil aeration zones and biological processes of organic carbon/nitrogen input from drainage waters, while that in urban rivers and lakes was mainly dominated by organic matter degradation and biological respiration. Enhanced internal primary productivity played critical roles in absorbing CO2 by photosynthesis in some unsaturated pCO2 sampling sites. Additionally, higher pCO2 levels have been observed with higher NH4+-N and lower DO. CO2 fluxes in sewage waters exhibited extremely high levels compared with those of natural rivers. The results could provide implications for assessing CO2 emissions in diverse waters and fulfilling water management polices when considering water contamination under intense anthropogenic activities.


Assuntos
Dióxido de Carbono , Rios , Dióxido de Carbono/análise , China , Monitoramento Ambiental , Nitrogênio , Esgotos , Urbanização , Água , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA