Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39099404

RESUMO

BACKGROUND: Roasting is an essential step in making roasted teas, and its role in producing flavors has been widely studied. However, the variation of potential hazardous compounds during the tea roasting process is still vague. The present study established an effective method based on liquid chromatography-triple quadrupole-tandem mass spectrometry to simultaneously determine the variation of acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), and free amino acids during the tea roasting process. Meanwhile, the effects of several tea polyphenols on the formation of AA and 5-HMF were investigated by a wet-to-dry thermal model reaction. RESULTS: Medium-temperature roasted teas had the highest levels of AA and 5-HMF, with ranges of 0.13-0.15 µg g-1 and 68.72-123.98 µg g-1, respectively. Quantitative results showed that the levels of monosaccharides and amino acids decreased during roasting, which might contribute to the formation of 5-HMF and AA. Meanwhile, the decrease of epigallocatechin gallate (EGCG), epigallocatechin (EGC), and epicatechin (EC) might be related to their inhibitory effects on 5-HMF and AA. Thermal model reaction results showed that EGCG and EC significantly inhibited 5-HMF formation with a decline rate of 33.33% and 72.22%, respectively, mainly by trapping glucose. Gallic acid (GA) also had an inhibitory effect on the formation of AA (decreased by 92.86%) and 5-HMF (44.44%), mainly through impeding the preliminary reaction of asparagine and glucose. CONCLUSION: The roasting temperature determined the levels of AA and 5-HMF in teas. Catechins inhibited the formation of 5-HMF and AA mostly through trapping monosaccharides, while the inhibitory effect of GA was achieved by impeding the reaction. © 2024 Society of Chemical Industry.

2.
Heliyon ; 9(6): e16804, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37332944

RESUMO

Due to growing consumer interest in fitness and wellbeing, foods and beverages with therapeutic and functional qualities are in higher demand. In addition to being significant staple crops and major providers of nutrition and energy, cereals are rich in bioactive phytochemicals with health benefits. Cereal grains offer a lot of promise for processing into functional beverages since these include a wide variety of bioactive phytochemicals such as phenolic compounds, carotenoids, dietary fibres, phytosterols, tocols, gamma-oryzanol, and phytic acid. Despite the fact that a wide variety of beverages made from cereal grains are produced globally, they have received very little technological and scientific attention. The beverages confer replacements for milk made from cereal grains, roasted cereal grain teas and fermented non-alcoholic cereal grain drinks. This review emphasizes on the three primary kinds of functional beverages made from cereal grains. Further, the potential applications and directions for the future related to these beverages are discussed with elaborated processing methods, health benefits and product attributes. Cereal grain-based beverages may represent a promising new class of healthy functional beverages in our daily lives as the food industry gets more diverse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA