Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(2): 142-150, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282122

RESUMO

Gallium (Ga) is an emerging chemical pollutant chiefly associated with high-tech industries. Boron (B) alleviates the negative effects of toxic elements on plant growth. Thereby, the effects of B fertilization on Ga toxicity in rice seedlings was studied to clarify the role of iron plaque in the distribution of Ga, Fe, and B in Ga-treated rice seedlings in the presence or absence of B. Gallium exposure significantly reduced the biomass of rice seedlings. Boron deficiency induced a significant change in the distribution of B in Ga-treated rice seedlings compared with "Ga+B" treatments. Accumulation of Ga in roots, dithionite-citrate-bicarbonate (DCB) extracts, and shoots showed a dose-dependent manner from both +B and -B rice seedlings. Boron nutrition levels affect the distribution of Fe in roots, DCB extracts, and shoots, in which DCB-extractable Fe was significantly decreased from "Ga-B" treatments compared with "Ga+B" treatments. Root activity was significantly decreased in both Ga-exposed rice seedlings; however, B-deficient seedlings showed a severe reduction than +B rice seedlings. These results reveal that Fe plaque might be a temporary sink for B accumulation when plants are grown with proper B, wherein the re-utilization of DCB-extractable B stored in Fe plaque is mandatory for plant growth under B deficiency. Correlation analysis revealed that B deficiency decreased the root activity of Ga-exposed rice seedlings by reducing DCB-extractable Fe and increasing DCB-extractable Ga in Fe plaque. This study enhances our understanding of how B nutritional levels affect Ga toxicity in rice plants.


Assuntos
Gálio , Oryza , Poluentes do Solo , Plântula , Ferro , Boro/toxicidade , Boro/análise , Gálio/farmacologia , Raízes de Plantas , Citratos/farmacologia , Ácido Cítrico/farmacologia , Poluentes do Solo/toxicidade
2.
Int J Phytoremediation ; : 1-9, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422506

RESUMO

Enriched biochar with improved properties and functionality can play a significant role in providing sustainable solutions for mitigating heavy metal contamination in soil. In this experiment, the effects of solid and enriched biochars (potassium-enriched biochar (BC-K), magnesium-enriched biochar (BC-Mg), both individually and combined) were examined on soil microbial and enzyme activities, as well as nutrient uptake by basil plants cultivated in a soil with three levels of arsenic (nontoxic, 50 mg As kg-1 soil, and 100 mg As kg-1 soil). Biochar-related treatments, increased soil organic matter (65-76%), while decreased availability of arsenic (6-55%) in the soil. The microbial biomass carbon (by about 123%) and soil basal respiration (by about 256%), and soil enzymatic activities (ß-glucosidase, urease, alkaline phosphatase, and dehydrogenase) were enhanced by enriched biochars under arsenic toxicity. The solid and particularly enriched biochars decreased arsenic content and improved nitrogen and phosphorus contents of roots and shoots, root length, root activity, and root and shoot biomass in basil plants. Therefore, it is conceivable to suggest that enriched biochars are superior treatments for improving nutrient absorption rates and basil growth under arsenic toxicity through decreasing arsenic mobility and increasing soil microbial activities.


Nutrient-enriched biochars with improved physicochemical properties could help to increase plant productivity, especially under heavy metal-contaminated soils. High arsenic adsorbing capacity of nano-Mg- and K-enriched biochars reduced arsenic availability and improved soil microbial activities involved in nutrient metabolism.

3.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1802-1808, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812192

RESUMO

The effects of humic acid water-soluble fertilizer on the growth and physiological characteristics of Bupleurum chinense seedlings(Zhongchai No.1) were studied by using a single factor experiment design. When the seedling age was 60 days, the humic acid water-soluble fertilizer was diluted 1 200 times(T1), 1 500 times(T2), 1 800 times(T3), and 2 100 times(T4) for seedling treatment, respectively, and water was used as the control(CK). The effects of different treatments on growth indexes, biomass accumulation, root activity, antioxidant enzyme activity, membrane lipid peroxidation, and photosynthetic characteristics of B. chinense seedlings were analyzed after 30 days. The results showed that compared with CK, stem height, leaf number, root diameter, and root length of the B. chinense seedlings under T3 treatment were significantly increased by 36.82%, 37.03%, 42.78%, and 22.38%, respectively. Root fresh weight, leaf fresh weight, root dry weight, and leaf dry weight under T3 treatment were significantly increased by 90.36%, 98.68%, 123.84%, and 104.38%, respectively. In addition, humic acid water-soluble fertilizer also enhanced TTC reducing activity of the root of B. chinense seedlings, inhibited malonaldehyde(MDA) content, increased superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) enzyme activities, improved chlorophyll content, and enhanced P_n, G_s, T_r, and other photosynthetic parameters. In conclusion, the application of humic acid water-soluble fertilizer diluted 1 800 times can significantly promote the growth of B. chinense seedlings, enhance root vitality, improve seedling stress resistance, and enhance photosynthesis. The results of this study can provide a theoretical basis for fertilization of B. chinense seedlings.


Assuntos
Bupleurum , Fertilizantes , Substâncias Húmicas , Raízes de Plantas , Plântula , Substâncias Húmicas/análise , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Fertilizantes/análise , Bupleurum/crescimento & desenvolvimento , Bupleurum/química , Bupleurum/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Fotossíntese/efeitos dos fármacos , Água/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Solubilidade , Superóxido Dismutase/metabolismo
4.
Plant Cell Environ ; 46(4): 1340-1362, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36097648

RESUMO

This study tested the hypothesis that brassinosteroids (BRs) mediate moderate soil-drying (MD) to alleviate spikelet degeneration under high temperature (HT) stress during meiosis of rice (Oryza sativa L.). A rice cultivar was pot-grown and subjected to normal temperature (NT) and HT treatments during meiosis, and two irrigation regimes including well-watered (WW) and MD were imposed to the plants simultaneously. The MD effectively alleviated the spikelet degeneration and yield loss under HT stress mainly via improving root activity and canopy and panicle traits including higher photosynthetic capacity, tricarboxylic acid cycle activity, and antioxidant capacity than WW. These parameters were regulated by BRs levels in plants. The decrease in BRs levels at HT was due mainly to the enhanced BRs decomposition, and the MD could rescue the BRs deficiency at HT via enhancing BRs biosynthesis and impeding decomposition. The connection between BRs and HT was verified by using rice BRs-deficient mutants, transgenic rice lines, and chemical regulators. Similar results were obtained in the open-air field experiment. The results suggest that BRs can mediate the MD to alleviate spikelet degeneration under HT stress during meiosis mainly via enhancing root activity, canopy traits, and young panicle traits of rice.


Assuntos
Brassinosteroides , Oryza , Brassinosteroides/farmacologia , Temperatura , Solo , Meiose
5.
BMC Plant Biol ; 21(1): 48, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461504

RESUMO

BACKGROUND: Despite significant limitations of growth medium reuse, a large amount of organic substrate is reused in soilless cultivation of horticultural crops in China. Arbuscular mycorrhizal fungi (AMF) can promote nutrient absorption and improve plant tolerance to biotic and abiotic stresses. However, the mechanisms governing the effects of AMF on crop growth in organic continuous cropping substrates have not been elucidated. RESULTS: In this study, we showed that the inoculation of AMF in continuous cropping substrates promoted growth and root development, and increased the root and NADP-malic enzyme (NADP-ME) activity of tomato seedlings. Root transcriptome analysis demonstrated that the plant hormone signal transduction pathway was highly enriched, and 109 genes that positively correlated with the AMF-inoculated plant phenotype were obtained by gene set enrichment analysis (GSEA), which identified 9 genes related to indole acetic acid (IAA). Importantly, the levels of endogenous IAA in tomato seedlings significantly increased after AMF inoculation. Furthermore, the application of AMF significantly increased the expression levels of NADP-ME1 and NADP-ME2, as well as the activity of NADP-ME, and enhanced the root activity of tomato seedlings in comparison to that observed without inoculation of AMF. However, these effects were blocked in plants treated with 2,3,5-triiodobenzoic acid (TIBA), a polar transport inhibitor of IAA. CONCLUSIONS: These results suggest that IAA mediates the AMF-promoted tomato growth and expression of NADP-MEs in continuous cropping substrates. The study provides convincing evidence for the reuse of continuous cropping substrates by adding AMF as an amendment.


Assuntos
Ácidos Indolacéticos/metabolismo , Malato Desidrogenase/metabolismo , Micorrizas/fisiologia , Raízes de Plantas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Fotossíntese , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
6.
Can J Microbiol ; 67(5): 349-357, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33769090

RESUMO

Arbuscular mycorrhizal (AM) fungi play an important role in the acquisition of phosphorus (P) by plants. The external hyphae of AM fungi function as an extension of plant roots and may downregulate related functions in the roots. It is not clear whether the ability of AM fungi to mineralize organic P affects root phosphatase activities. A pot experiment was conducted to investigate the effect of Funneliformis mosseae on soil organic P mineralization under phytate application and to explore root phosphatase activities, P uptake, and growth in Camellia oleifera Abel. The plants and their growth substrates were harvested 4 and 8 months after planting. The results showed that organic P application had no effect on the total dry mass of nonmycorrhizal plants, but differences in dry mass under P application were observed in mycorrhizal plants in both harvests. Inoculation with F. mosseae increased soil acid phosphatase, phytase, and alkaline phosphatase activities and reduced the soil organic P content. Mycorrhizal plants had higher root activity, shoot and root P contents and root acid phosphatase and phytase activities than nonmycorrhizal plants irrespective of organic P application. In conclusion, AM fungi enhanced the mineralization of soil organic P and positively affect root phosphatase activities.


Assuntos
Camellia/metabolismo , Camellia/microbiologia , Fungos/enzimologia , Organofosfatos/análise , Fósforo/análise , Microbiologia do Solo , Camellia/crescimento & desenvolvimento , Interações entre Hospedeiro e Microrganismos , Micorrizas/enzimologia , Organofosfatos/metabolismo , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Simbiose
7.
Ecotoxicol Environ Saf ; 226: 112816, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597844

RESUMO

Cold stress is an adverse environmental condition that limits the growth and yield of leguminous plants. Thus, discovering an effective way of ameliorating cold-mediated damage is important for sustainable legume production. In this study, the combined use of Rhizobium inoculation (RI) and melatonin (MT) pretreatment was investigated in Medicago truncatula plants under cold stress. Eight-week-old seedlings were divided into eight groups: (i) CK (no stress, noninoculated, no MT), (ii) RI (Rhizobium inoculated), (iii) MT (75 µM melatonin), (iv) RI+MT, (v) CS (cold stress at 4 °C without Rhizobium inoculation and melatonin), (vi) CS+RI, (vii) CS+MT, and (viii) CS+RI+MT. Plants were exposed to cold stress for 24 hrs. Cold stress decreased photosynthetic pigments and increased oxidative stress. Pretreatment with RI and MT alone or combined significantly improved root activity and plant biomass production under cold stress. Interestingly, chlorophyll contents increased by 242.81% and MDA levels dramatically decreased by 34.22% in the CS+RI+MT treatment compared to the CS treatment. Moreover, RI+MT pretreatment improved the antioxidative ability by increasing the activities of peroxidase (POD; 8.45%), superoxide dismutase (SOD; 50.36%), catalase (CAT; 140.26%), and ascorbate peroxidase (APX; 42.63%) over CS treated plants. Additionally, increased osmolyte accumulation, nutrient uptake, and nitrate reductase activity due to the combined use of RI and MT helped the plants counteract cold-mediated damage by strengthening the nonenzymatic antioxidant system. These data indicate that pretreatment with a combined application of RI and MT can attenuate cold damage by enhancing the antioxidation ability of legumes.


Assuntos
Medicago truncatula , Melatonina , Rhizobium , Antioxidantes , Resposta ao Choque Frio , Melatonina/farmacologia , Estresse Oxidativo , Plântula
8.
J Sci Food Agric ; 100(14): 5292-5300, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32542650

RESUMO

BACKGROUND: Tea is an important economic crop in China. Mulching, a modern agricultural practice, can modify the soil microenvironment and maintain the crop yield. RESULTS: To investigate the effect of different mulching modes on tea plant growth, filed experiments were conducted in a Shizipu tea plantation located in Langxi Country (Xuanchen City, Anhui Province, China). Five treatments were carried out in a randomized complete block arrangement: (i) clean tillage (control); (ii) black plastic film; (iii) weed barrier fabric; (iv) rice straw mulch; and (v) intercropping with Vulpia myuros. The effects of different mulch modes on soil temperature, water moisture, soil compactness, root activity, soil enzyme activity and nutrition status on tea yield, quality and economic benefits were compared at the harvest stage. In the present study, compared with other mulch treatments, intercropping with V. myuros significantly reduced the topsoil temperature (to an optimum temperature) and soil compactness, and increased the water holding capacity in the deep soil layer, which contributed to increased tea root activity and respiration. Furthermore, intercropping with V. myuros significantly increased soil enzymes activity, soil organic matter, and the available nitrogen and phosphorus concentrations in the main root zone. Therefore, the stronger tea root activity accelerated nutrition uptake and increased the tea yield and quality-related components of the tea, thus resulting in a larger average net income. CONCLUSION: Intercropping with V. myuros could serve as a profitable agricultural method for tea production. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Produção Agrícola/métodos , Solo/química , Camellia sinensis/química , China , Nitrogênio/análise , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Chá/química , Temperatura , Água/análise
9.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696055

RESUMO

Salt stress is one of the key abiotic stresses causing huge productivity losses in rice. In addition, the differential sensitivity to salinity of different rice genotypes during different growth stages is a major issue in mitigating salt stress in rice. Further, information on quantitative proteomics in rice addressing such an issue is scarce. In the present study, an isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative protein quantification was carried out to investigate the salinity-responsive proteins and related biochemical features of two contrasting rice genotypes-Nipponbare (NPBA, japonica) and Liangyoupeijiu (LYP9, indica), at the maximum tillering stage. The rice genotypes were exposed to four levels of salinity: 0 (control; CK), 1.5 (low salt stress; LS), 4.5 (moderate salt stress; MS), and 7.5 g of NaCl/kg dry soil (high salt stress, HS). The iTRAQ protein profiling under different salinity conditions identified a total of 5340 proteins with 1% FDR in both rice genotypes. In LYP9, comparisons of LS, MS, and HS compared with CK revealed the up-regulation of 28, 368, and 491 proteins, respectively. On the other hand, in NPBA, 239 and 337 proteins were differentially upregulated in LS and MS compared with CK, respectively. Functional characterization by KEGG and COG, along with the GO enrichment results, suggests that the differentially expressed proteins are mainly involved in regulation of salt stress responses, oxidation-reduction responses, photosynthesis, and carbohydrate metabolism. Biochemical analysis of the rice genotypes revealed that the Na⁺ and Cl- uptake from soil to the leaves via the roots was increased with increasing salt stress levels in both rice genotypes. Further, increasing the salinity levels resulted in increased cell membrane injury in both rice cultivars, however more severely in NPBA. Moreover, the rice root activity was found to be higher in LYP9 roots compared with NPBA under salt stress conditions, suggesting the positive role of rice root activity in mitigating salinity. Overall, the results from the study add further insights into the differential proteome dynamics in two contrasting rice genotypes with respect to salt tolerance, and imply the candidature of LYP9 to be a greater salt tolerant genotype over NPBA.


Assuntos
Marcação por Isótopo/métodos , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cloretos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Genótipo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Sódio/metabolismo , Solo/química
10.
Chirality ; 30(4): 469-474, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29334408

RESUMO

The objective of this experiment was to study the effects of metalaxyl enantiomers on the activity of roots and antioxidative enzymes in tobacco seedlings. Water culture experiment was conducted to analyze the effects of different concentrations of metalaxyl enantiomers (30 and 10 mg L-1 ) on root activity and leaf superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and malondialdehyde (MDA) content of tobacco seedlings. The results showed that metalaxyl significantly inhibited root activity and significantly improved leaf SOD, POD, and CAT activities and MDA content. A better physiological response in tobacco seedlings was observed at 30 mg L-1 than at 10 mg L-1 metalaxyl. The stereoselectivity for different enantiomers had no obvious effect on root activity and the leaf POD activity, but it affected significantly the SOD and CAT activities and MDA content. The SOD activity was promoted more by R-enantiomer than by S-enantiomer at 30 mg L-1 metalaxyl, and the same effect was observed on CAT activity from the beginning to the end of the stress period. The MDA content under the stress by R-enantiomer was higher than that under the stress by S-enantiomer at 10 mg L-1 metalaxyl.


Assuntos
Alanina/análogos & derivados , Antioxidantes/metabolismo , Enzimas/metabolismo , Nicotiana/efeitos dos fármacos , Alanina/química , Alanina/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Malondialdeído/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Estereoisomerismo , Nicotiana/metabolismo
11.
Tree Physiol ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375010

RESUMO

Coating high concentrations of copper (Cu) on the inner wall of containers can efficiently inhibit root entanglement of container-grown seedlings. However, how the protective and defensive responses of roots maintain root structure and function during Cu-root pruning is still unclear. Here, Duranta erecta seedlings were planted in the containers coated with 40 (T1), 80 (T2), 100 (T3), 120 (T4), 140 (T5), and 160 (T6) g L-1 Cu(OH)2 with containers without Cu(OH)2 as the control. Although T5 and T6 produced the best inhibitory effect on root entanglement, root anatomy structure was damaged. T1 and T2 not only failed to completely control root circling, but also led to decreased root activity and stunted growth. Cu(OH)2 treatments significantly increased lignin concentration of roots with the highest values at T3 and T4. Compared with T3, seedlings at T4 had higher height, biomass, and root activity and no significant root entanglement. Excessive Cu accumulation in Cu(OH)2 treatments changed the absorption of other mineral nutrients and their allocation in the roots, stems, and leaves. Overall, Ca was decreased while Mg, Mn, Fe, and K were increased, especially K and Mn at T4 which is related to defense capacity. The results indicate that there is a Cu threshold to balance root entanglement control, defense capacity, and nutrient uptake function under excessive Cu for container-grown D. erecta seedlings.

12.
Sci Rep ; 14(1): 14823, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937645

RESUMO

This study investigates using magnesium foliar spray to enhance mint plants' growth and physiological performance under cadmium toxicity. It examines the effects of foliar application of magnesium oxide (40 mg L-1), in both nano and bulk forms, on mint plants exposed to cadmium stress (60 mg kg-1 soil). Cadmium stress reduced root growth and activity, plant biomass (32%), leaf hydration (19%), chlorophyll levels (27%), magnesium content (51%), and essential oil yield (35%), while increasing oxidative and osmotic stress in leaf tissues. Foliar application of magnesium increased root growth (32%), plant biomass, essential oil production (17%), leaf area (24%), chlorophyll content (10%), soluble sugar synthesis (33%), and antioxidant enzyme activity, and reduced lipid peroxidation and osmotic stress. Although the nano form of magnesium enhanced magnesium absorption, its impact on growth and physiological performance was not significantly different from the bulk form. Therefore, foliar application of both forms improves plants' ability to withstand cadmium toxicity. However, the study is limited by its focus on a single plant species and specific environmental conditions, which may affect the generalizability of the results. The long-term sustainability of such treatments could provide a more comprehensive understanding of magnesium's role in mitigating heavy metal stress in plants.


Assuntos
Cádmio , Óxido de Magnésio , Mentha , Folhas de Planta , Estresse Fisiológico , Cádmio/toxicidade , Mentha/efeitos dos fármacos , Mentha/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Clorofila/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Magnésio/metabolismo , Biomassa
13.
Front Plant Sci ; 15: 1366718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545391

RESUMO

Direct seeding ratoon rice (DSRR) system is a planting method that can significantly increase grain yield, improving light and temperature utilization efficiency and reducing labor input. However, the current nitrogen fertilizer management method which does not aim at the seedling emergence and development characteristics of DSRR just is only based on the traditional method of transplanting ratoon rice, and which is not conducive to the population development and yield improvement. To determine the suitable nitrogen fertilizer application optimization, we set four nitrogen fertilizer application treatments (N0, no nitrogen fertilizer; N1, traditional nitrogen fertilizer; N2, transferring 20% of total nitrogen from basal fertilizer to tillering stage; N3, reducing total nitrogen by 10% from N2 tillering fertilizer) on a hybrid rice "Fengliangyouxiang1 (FLYX1)" and an inbred rice "Huanghuazhan (HHZ)" under DSRR. The effects of treatments on dry matter accumulation, root growth and vigor, leaf area index, leaf senescence rate and yield were investigated. Our results demonstrated that the yield of main crop in N2 treatment was the highest, which was 63.3%, 6.6% and 8.8% higher than that of N0, N1 and N3 treatment, respectively, mainly due to the difference of effective panicle and spikelets number per m2. The average of two years and varieties, the annual yield of N2 was significant higher than that of N1 and N3 by 4.94% and 8.55%, respectively. However, there was no significant difference between the annual yields of N1 and N3. N2 treatment had significant effects on the accumulation of aboveground dry matter mass which was no significant difference in 20 days after sowing(DAS), but significant difference in 50 DAS. Meanwhile, the root activity and the leaf senescence rate of N2 treatment was significant lower than that of other treatments. In summary, "20% of total nitrogen was transferred from basal fertilizer to tillering stage" can improve the annual yield and main crop development of DSRR system. Further reducing the use of nitrogen fertilizer may significantly improve the production efficiency of nitrogen fertilizer and improve the planting income in DSRR system.

14.
Plant Methods ; 20(1): 5, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195647

RESUMO

BACKGROUND: The measurement of root dielectric response is a useful non-destructive method to evaluate root growth and function. Previous studies tracked root development throughout the plant growing cycle by single-time electrical measurements taken repeatedly. However, it is known that root conductivity and uptake activity can change rapidly, coupled with the day/night cycles of photosynthetic and transpiration rate. Therefore, the low-frequency dielectric monitoring of intact root-substrate systems at minute-scale temporal resolution was tested using a customized impedance measurement system in a laboratory environment. Electrical capacitance (CR) and conductance (GR) and the dissipation factor (DR) were detected for 144 h in potted maize, cucumber and pea grown under various light/dark and temperature conditions, or subjected to progressive leaf excision or decapitation. Photosynthetic parameters and stomatal conductance were also measured to evaluate the stress response. RESULTS: The CR and GR data series showed significant 24-h seasonality associated with the light/dark and temperature cycles applied. This was attributed to the diurnal patterns in whole-plant transpiration (detected via stomatal conductance), which is strongly linked to the root water uptake rate. CR and GR decreased during the 6-day dark treatment, and dropped proportionally with increasing defoliation levels, likely due to the loss of canopy transpiration caused by dark-induced senescence or removal of leaves. DR showed a decreasing trend for plants exposed to 6-day darkness, whereas it was increased markedly by decapitation, indicating altered root membrane structure and permeability, and a modified ratio of apoplastic to cell-to-cell water and current pathways. CONCLUSIONS: Dynamic, in situ impedance measurement of the intact root system was an efficient way of following integrated root water uptake, including diurnal cycles, and stress-induced changes. It was also demonstrated that the dielectric response mainly originated from root tissue polarization and current conduction, and was influenced by the actual physiological activity of the root system. Dielectric measurement on fine timescale, as a diagnostic tool for monitoring root physiological status and environmental response, deserves future attention.

15.
Front Plant Sci ; 14: 1176142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469775

RESUMO

Background: The implementation of the Millennium Forestry Plan was accompanied by growth discomfort exhibiting varying degrees of symptoms in some coniferous forests after the rainy season. Hypothesis: High soil water content affects the underground root growth and distribution characteristics of conifers, and the above-ground parts show corresponding variability. To determine the factors contributing to the significant growth disparities among the three conifers in Xiong'an New Area after the rainy season, we conducted a study investigating the growth characteristics of conifers. This study involved analyzing the external morphology of the plants, assessing leaf pigment content, measuring the root morphological index and root vigor, as well as respiratory characteristics, to evaluate the growth attributes of their root systems in a high soil moisture environment. Methods: In the "Millennium Forest" area of Xiong'an New Area, we selected three coniferous trees, Pinus tabuliformis, Pinus bungeana and Pinus armandii, and set up three standard sample plots for each conifer. The conifers were classified into 3 levels according to their growth performance (vigorous or suppressed), leaf condition (color change, wilting or not) and relevant grading criteria. Results: (1) The growth of the three conifers displayed discernible differences in external morphology. Moreover, a decrease in growth condition corresponded to a reduction in crown size, ground diameter, diameter at breast height, leaf length, and new growths. (2) The root biomass, length, surface area, and root volume of conifers growing N class were significantly reduced than those of L class conifers. Conifers with a higher proportion of root systems in the 40-60 cm soil layer experienced more severe stress. (3) The significant decline in root respiration and vigor among all three conifer growth classes (M and N) suggested that the root system was undergoing anoxic stress, particularly at a soil depth of 40-60 cm where root respiration and vigor were notably reduced. (4) The persistent anoxic stress created by long-term exposure to high soil moisture content primarily impacted P. armandii to a greater extent than P. tabuliformis and P. bungeana. Additionally, the transporting and absorbing root ratios varied among conifers with differing growth conditions. The long-term high moisture environment also caused partial death of absorbing roots, which played a key role in the observed differences in growth. (5) As the soil depth increases, the soil water content increases accordingly. Plants with more root distribution in the deeper soil layers grow worse than those distributed in the top soil layers. Soil water content is related to aeration, root distribution, growth and growth of above-ground parts. The variability of root distribution and growth led to the differentiation of the growth of the above-ground part of the plant in terms of external morphology, which inhibited the overall plant growth. The results of the study provide a theoretical basis for the cultivation and management of three conifers in high soil moisture environments.

16.
Front Plant Sci ; 14: 1119076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743492

RESUMO

Heat stress is a major constraint for plant production, and evapotranspiration is highly linked to plant production. However, the response mechanism of evapotranspiration to heat stress remains unclear. Here, we investigated the effects of heat stress during two main growth stages on transpiration and evapotranspiration of gerbera. Two levels of day/night temperature were adopted during the vegetative growth stage (VG) and the flowering bud differentiation stage (FBD), namely control (CK; 28/18 °C) and heat stress (HS; 38/28°C) levels. The duration of HS was set as 5, 10, 15, and 20 days, respectively. At the beginning of HS, hourly transpiration was mainly inhibited near noon. With continuation of HS, the duration and extent of inhibition of hourly transpiration increased. Daily transpiration rate was also markedly reduced by HS during the VG (18.9%-31.8%) and FBD (12.1%-20.3%) stages compared to CK. The decrease in the daily transpiration rate was greater for longer duration of heat stress. This reduction of transpiration was the main contributor to stomatal limitation at the beginning of HS, while additional inhibition of root activity, leaf area, and root biomass occurred under long-term HS. The daily transpiration rate could not recover after the end of HS (so-called recovery phase), except when HS lasted 5 days during the VG stage. Interestingly, daily evapotranspiration during HS was substantially increased during the VG (12.6%-24.5%) and FBD (8.4%-17.6%) stages as a result of more increased evaporation (100%-115%) than reduced transpiration. However, during the recovery phase, the daily evapotranspiration was markedly decreased at the VG (11.2%-22.7%) and FBD (11.1%-19.2%) stages. Hence, we suggest that disproportionate variation of transpiration and evaporation during HS, especially at the recovery phase, should be considered in various evapotranspiration models and climate scenarios projections.

17.
Chemosphere ; 313: 137365, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427572

RESUMO

Electrochemical properties of roots such as zeta potential and cation exchange capacity are important factors that play a critical role in the absorption of nutrients by plants. Adding biochar to the soil may improve the electrochemical properties of the roots and thereby increase absorption of nutrients by plants. Thus, this research was laid out under greenhouse condition to evaluate the possible effects of biochar addition to soil (25 g biochar kg-1 soil) on changing electrochemical properties of roots, nutrients absorption, and growth parameters of safflower (with a deep root system) and mint (with a shallow root system) plants. Biochar noticeably increased pH and cation exchange capacity of soil, safflower and mint growth, calcium, magnesium and iron contents in roots and maximum sorption capacity of these nutrients by plant roots. Electrochemical measurements reveled that biochar application increases negative charges on root surface area (by about 30% and 36% in safflower and mint roots, respectively), cation exchange capacity of roots and root activity in both plants. On the other hand, biochar reduced zeta potential in plant roots (more negative potential). Reduction of zeta potential by biochar application were about 31% and 42% in safflower and mint roots, respectively. The cation-exchange groups (hydroxycinnamic acid + carboxyl groups) were increased due to biochar treatment by about 30% in safflower and 32% in mint roots. As an annual plant with deep roots, safflower roots had more functional groups, cation exchange capacity and root activity than mint plant in both biochar and control conditions. Results of this research showed that biochar not only adjusts physicochemical properties of rhizosphere, but also improves electrochemical specification of plant roots via increasing number of functional groups on root cell walls, which enhances maximum sorption capability of plant roots.


Assuntos
Raízes de Plantas , Poluentes do Solo , Raízes de Plantas/química , Carvão Vegetal/química , Solo/química , Transporte Biológico , Poluentes do Solo/análise
18.
Environ Pollut ; 336: 122485, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659631

RESUMO

Ketoprofen, a commonly used non-steroidal anti-inflammatory drug (NSAID), can enter farmland environments via sewage irrigation and manure application and is toxic to plants. However, there have been relatively few studies on the association of ketoprofen with nitrogen (N) assimilation and metabolic responses in plants. Accordingly, the goal of this study was to investigate the effects of ketoprofen on ATP synthesis and N assimilation in rice roots. The results showed that with increasing ketoprofen concentration, root vitality, respiration rate, ATP content, and H+-ATPase activity decreased and plasma membrane permeability increased. The expressions of OSA9, a family III H+-ATPase gene, and OSA6 and OSA10, family IV genes, were upregulated, indicating a response of the roots to ketoprofen. Nitrate, ammonium, and free amino acids content decreased with increased ketoprofen. The levels of enzymes involved in N metabolism, namely nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthetase, and glutamate dehydrogenase, also decreased under ketoprofen treatment. Principal component analysis revealed that ketoprofen treatment can significantly affect energy synthesis and nitrogen assimilation in rice roots, while these effects can be alleviated by the antioxidant response. Most of the metabolite contents increased, including amino acids, carbohydrates, and secondary metabolites. Key metabolic pathways, namely substance synthesis and energy metabolism, were found to be disrupted. Microbiome analysis showed that community diversity and richness of rice root microorganisms in solution increased with increasing levels of ketoprofen treatment, and the microbial community structure and metabolic pathways significantly changed. The results of this study provides new insights into the response of rice roots to ketoprofen.


Assuntos
Cetoprofeno , Oryza , Nitrogênio/metabolismo , Oryza/metabolismo , Cetoprofeno/metabolismo , Cetoprofeno/farmacologia , Raízes de Plantas/metabolismo , Aminoácidos/metabolismo , Metaboloma , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/farmacologia , Trifosfato de Adenosina/metabolismo
19.
PeerJ ; 11: e15925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37641595

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a highly nutritious food product with a comprehensive development prospect. Here, we discussed the effect of Bacillus amyloliquefaciens 11B91 on the growth, development and salt tolerance (salt concentrations: 0, 150, 300 mmol·L-1) of quinoa and highlighted a positive role for the application of plant growth-promoting rhizobacteria bacteria in quinoa. In this artical, the growth-promoting effect of Bacillus amyloliquefaciens 11B91 on quinoa (Longli No.1) and the changes in biomass, chlorophyll content, root activity and total phosphorus content under salt stress were measured. The results revealed that plants inoculated with 11B91 exhibited increased maximum shoot fresh weight (73.95%), root fresh weight (75.36%), root dry weight (136%), chlorophyll a (65.32%) contents and chlorophyll b (58.5%) contents, root activity (54.44%) and total phosphorus content (16.66%). Additionally, plants inoculated with 11B91 under salt stress plants showed significantly improved, fresh weight (107%), dry weight (133%), chlorophyll a (162%) contents and chlorophyll b (76.37%) contents, root activity (33.07%), and total phosphorus content (42.73%).


Assuntos
Bacillus amyloliquefaciens , Chenopodium quinoa , Clorofila A , Fósforo , Estresse Salino
20.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1290-1296, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37236946

RESUMO

Aiming at solving the problems of soil environment deterioration and the decline of both yield and quality caused by excessive application of chemical fertilizer, we investigated the effects of rotted corn straw on the soil environment of root zone, yield and quality of cucumber with 'Jinyou 35' cucumber as the experimental material. There were three treatments, namely, combined application of rotted corn straw and chemical fertilizer (T1, the total nitrogen fertilizer application were 450 kg N·hm-2, of which 9000 kg·hm-2 rotted corn straw was used as the subsoil fertilizer, and the rest was supplemented with chemical fertilizer), pure chemical fertilizer (T2, the total nitrogen fertilizer application was the same as T1) and no fertilization (control). The results showed that the content of soil organic matter in root zone soil in T1 treatment was much higher, but no difference between T2 treatment and the control, after two continuous plantings in one year. The concentrations of soil alkaline nitrogen, available phosphorus, available potassium of T1 and T2 in cucumber root zone were higher than that in the control. T1 treatment had lower bulk density, but markedly higher porosity and respiratory rate than T2 treatment and the control in root zone soil. The electric conductivity of T1 treatment was higher than that of the control, but significantly lower than T2 treatment. There was no significant difference in pH among the three treatments. The quantity of bacteria and actinomycetes in cucumber rhizosphere soil were the highest in T1, and the lowest in the control. However, the highest quantity of fungi was found in T2. The enzyme activities of rhizosphere soil in T1 treatment were markedly higher than those of the control, whereas those of T2 treatment were significantly lower or had no significant difference relative to the control. The cucumber root dry weight and root activity of T1 were significantly higher than that of the control. The yield of T1 treatment increased by 10.1%, and fruit quality improved obviously. The root activity of T2 treatment was also significantly higher than that in the control. There was no significant difference in root dry weight and yield between T2 treatment and the control. Furthermore, T2 treatment revealed a decrease in fruit quality relative to T1 treatment. These results suggested that the combined application of rotted corn straw and chemical fertilizer could improve soil environment, promote root growth, enhance root activity and improve yield and quality of cucumber in solar-greenhouse, which could be popularized and applied in protected cucumber production.


Assuntos
Cucumis sativus , Solo , Solo/química , Agricultura/métodos , Zea mays , Fertilizantes , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA